期刊文献+
共找到10,031篇文章
< 1 2 250 >
每页显示 20 50 100
Improving the reliability of classical molecular dynamics simulations in battery electrolyte design
1
作者 Xin He Yujie Zhang +5 位作者 Haomiao Li Min Zhou Wei Wang Ruxing Wang Kai Jiang Kangli Wang 《Journal of Energy Chemistry》 2025年第2期34-41,I0002,共9页
Explorations into new electrolytes have highlighted the critical impact of solvation structure on battery performance,Classical molecular dynamics(CMD)using semi-empirical force fields has become an essential tool for... Explorations into new electrolytes have highlighted the critical impact of solvation structure on battery performance,Classical molecular dynamics(CMD)using semi-empirical force fields has become an essential tool for simulating solvation structures.However,mainstream force fields often lack accuracy in describing strong ion-solvent interactions,causing disparities between CMD simulations and experimental observations.Although some empirical methods have been employed in some of the studies to address this issue,their effectiveness has been limited.Our CMD research,supported by quantum chemical calculations and experimental data,reveals that the solvation structure is influenced not only by the charge model but also by the polarization description.Previous empirical approaches that focused solely on adjusting ion-solvent interaction strengths overlooked the importance of polarization effects.Building on this insight,we propose integrating the Drude polarization model into mainstream force fields and verify its feasibility in carbonate,ether,and nitrile electrolytes.Our experimental results demonstrate that this approach significantly enhances the accuracy of CMD-simulated solvation structures.This work is expected to provide a more reliable CMD method for electrolyte design,shielding researchers from the pitfalls of erroneous simulation outcomes. 展开更多
关键词 ELECTROLYTE Classical molecular dynamics Solvation structure simulations
在线阅读 下载PDF
Dynamic impact simulation tests of deep roadways affected by high stress and fault slip
2
作者 Qi Wang Yuncai Wang +3 位作者 Zhenhua Jiang Hongpu Kang Chong Zhang Bei Jiang 《International Journal of Mining Science and Technology》 2025年第4期519-537,共19页
As coal mining depth increases,the combined effects of high stress,mining stress,and fault structures make dynamic impact hazards more frequent.The reproduction of dynamic impact phenomena is basis for studying their ... As coal mining depth increases,the combined effects of high stress,mining stress,and fault structures make dynamic impact hazards more frequent.The reproduction of dynamic impact phenomena is basis for studying their occurrence patterns and control mechanisms.Physical simulation test represents an efficacious methodology.However,there is currently a lack of simulation devices that can effectively simulate two types of dynamic impact phenomena,including high stress and fault slip dynamic impact.To solve aforementioned issues,the physical simulation test system for dynamic impact in deep roadways developed by authors is employed to carry out comparative tests of high stress and fault slip dynamic impact.The phenomena of high stress and fault slip dynamic impact are reproduced successfully.A comparative analysis is conducted on dynamic phenomena,stress evolution,roadway deformation,and support force.The high stress dynamic impact roadway instability mode,which is characterized by the release of high energy accompanied by symmetric damage,and the fault slip dynamic impact roadway instability mode,which is characterized by the propagation of unilateral stress waves accompanied by asymmetric damage,are clarified.On the basis,the differentiated control concepts for different types of dynamic impact in deep roadways are proposed. 展开更多
关键词 Deep roadway dynamic impact simulation High stress Fault slip Occurrence law
在线阅读 下载PDF
Plastic deformation mechanism of γ-phase U–Mo alloy studied by molecular dynamics simulations
3
作者 Chang Wang Peng Peng Wen-Sheng Lai 《Chinese Physics B》 2025年第1期468-475,共8页
Uranium–molybdenum(U–Mo) alloys are critical for nuclear power generation and propulsion because of their superior thermal conductivity, irradiation stability, and anti-swelling properties. This study explores the p... Uranium–molybdenum(U–Mo) alloys are critical for nuclear power generation and propulsion because of their superior thermal conductivity, irradiation stability, and anti-swelling properties. This study explores the plastic deformation mechanisms of γ-phase U–Mo alloys using molecular dynamics(MD) simulations. In the slip model, the generalized stacking fault energy(GSFE) and the modified Peierls–Nabarro(P–N) model are used to determine the competitive relationships among different slip systems. In the twinning model, the generalized plane fault energy(GPFE) is assessed to evaluate the competition between slip and twinning. The findings reveal that among the three slip systems, the {110}<111>slip system is preferentially activated, while in the {112}<111> system, twinning is favored over slip, as confirmed by MD tensile simulations conducted in various directions. Additionally, the impact of Mo content on deformation behavior is emphasized. Insights are provided for optimizing process conditions to avoid γ → α′′ transitions, thereby maintaining a higher proportion of γ-phase U–Mo alloys for practical applications. 展开更多
关键词 U-Mo alloy molecular dynamics simulation plastic deformation mechanism dislocation slip twin formation
在线阅读 下载PDF
Temperature-Induced Unfolding Pathway of Staphylococcal Enterotoxin B:Insights from Circular Dichroism and Molecular Dynamics Simulation 被引量:1
4
作者 LIU Ji ZHANG Shiyu +1 位作者 ZENG Yu DENG Yi 《食品科学》 EI CAS CSCD 北大核心 2024年第18期55-76,共22页
In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the re... In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the relationship between the experimental and simulation results were explored.Our computational findings on the secondary structure of SEB showed that at room temperature,the CD spectroscopic results were highly consistent with the MD results.Moreover,under heating conditions,the changing trends of helix,sheet and random coil obtained by CD spectral fitting were highly consistent with those obtained by MD.In order to gain a deeper understanding of the thermal stability mechanism of SEB,the MD trajectories were analyzed in terms of root mean square deviation(RMSD),secondary structure assignment(SSA),radius of gyration(R_(g)),free energy surfaces(FES),solvent-accessible surface area(SASA),hydrogen bonds and salt bridges.The results showed that at low heating temperature,domain Ⅰ without loops(omitting the mobile loop region)mainly relied on hydrophobic interaction to maintain its thermal stability,whereas the thermal stability of domain Ⅱ was mainly controlled by salt bridges and hydrogen bonds.Under high heating temperature conditions,the hydrophobic interactions in domain Ⅰ without loops were destroyed and the secondary structure was almost completely lost,while domain Ⅱ could still rely on salt bridges as molecular staples to barely maintain the stability of the secondary structure.These results help us to understand the thermodynamic and kinetic mechanisms that maintain the thermal stability of SEB at the molecular level,and provide a direction for establishing safer and more effective food sterilization processes. 展开更多
关键词 staphylococcal enterotoxin B circular dichroism molecular dynamics simulations temperature-induced unfolding
在线阅读 下载PDF
Molecular Dynamics Simulation of Shock Response of CL-20 Co-crystals Containing Void Defects 被引量:1
5
作者 Changlin Li Wei Yang +5 位作者 Qiang Gan Yajun Wang Lin Liang Wenbo Zhang Shuangfei Zhu Changgen Feng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期364-374,共11页
To investigate the effect of void defects on the shock response of hexanitrohexaazaisowurtzitane(CL-20)co-crystals,shock responses of CL-20 co-crystals with energetic materials ligands trinitrotoluene(TNT),1,3-dinitro... To investigate the effect of void defects on the shock response of hexanitrohexaazaisowurtzitane(CL-20)co-crystals,shock responses of CL-20 co-crystals with energetic materials ligands trinitrotoluene(TNT),1,3-dinitrobenzene(DNB),solvents ligands dimethyl carbonate(DMC) and gamma-butyrolactone(GBL)with void were simulated,using molecular dynamics method and reactive force field.It is found that the CL-20 co-crystals with void defects will form hot spots when impacted,significantly affecting the decomposition of molecules around the void.The degree of molecular fragmentation is relatively low under the reflection velocity of 2 km/s,and the main reactions are the formation of dimer and the shedding of nitro groups.The existence of voids reduces the safety of CL-20 co-crystals,which induced the sensitivity of energetic co-crystals CL-20/TNT and CL-20/DNB to increase more significantly.Detonation has occurred under the reflection velocity of 4 km/s,energetic co-crystals are easier to polymerize than solvent co-crystals,and are not obviously affected by voids.The results show that the energy of the wave decreases after sweeping over the void,which reduces the chemical reaction frequency downstream of the void and affects the detonation performance,especially the solvent co-crystals. 展开更多
关键词 CL-20 co-crystals Molecular dynamics simulation Reactive forcefield Impact response Hot spot Void defect
在线阅读 下载PDF
Dynamic simulation of differential accumulation history of deep marine oil and gas in superimposed basin:A case study of Lower Paleozoic petroleum system of Tahe Oilfield,Tarim Basin,NW China 被引量:1
6
作者 LI Bin ZHONG Li +4 位作者 LYU Haitao YANG Suju XU Qinqi ZHANG Xin ZHENG Binsong 《Petroleum Exploration and Development》 SCIE 2024年第5期1217-1231,共15页
According to the complex differential accumulation history of deep marine oil and gas in superimposed basins,the Lower Paleozoic petroleum system in Tahe Oilfield of Tarim Basin is selected as a typical case,and the p... According to the complex differential accumulation history of deep marine oil and gas in superimposed basins,the Lower Paleozoic petroleum system in Tahe Oilfield of Tarim Basin is selected as a typical case,and the process of hydrocarbon generation and expulsion,migration and accumulation,adjustment and transformation of deep oil and gas is restored by means of reservoine-forming dynamics simulation.The thermal evolution history of the Lower Cambrian source rocks in Tahe Oilfield reflects the obvious differences in hydrocarbon generation and expulsion process and intensity in different tectonic zones,which is the main reason controlling the differences in deep oil and gas phases.The complex transport system composed of strike-slip fault and unconformity,etc.controlled early migration and accumulation and late adjustment of deep oil and gas,while the Middle Cambrian gypsum-salt rock in inner carbonate platform prevented vertical migration and accumulation of deep oil and gas,resulting in an obvious"fault-controlled"feature of deep oil and gas,in which the low potential area superimposed by the NE-strike-slip fault zone and deep oil and gas migration was conducive to accumulation,and it is mainly beaded along the strike-slip fault zone in the northeast direction.The dynamic simulation of reservoir formation reveals that the spatio-temporal configuration of"source-fault-fracture-gypsum-preservation"controls the differential accumulation of deep oil and gas in Tahe Oilfield.The Ordovician has experienced the accumulation history of multiple periods of charging,vertical migration and accumulation,and lateral adjustment and transformation,and deep oil and gas have always been in the dynamic equilibrium of migration,accumulation and escape.The statistics of residual oil and gas show that the deep stratum of Tahe Oilfield still has exploration and development potential in the Ordovician Yingshan Formation and Penglaiba Formation,and the Middle and Upper Cambrian ultra-deep stratum has a certain oil and gas resource prospect.This study provides a reference for the dynamic quantitative evaluation of deep oil and gas in the Tarim Basin,and also provides a reference for the study of reservoir formation and evolution in carbonate reservoir of paleo-craton basin. 展开更多
关键词 superimposed basin Tarim Basin marine carbonate rock oil and gas differential accumulation dynamic accumulation simulation fluid potential technology Tahe Oilfield Lower Paleozoic petroleum system simulation deep and ultra-deep strata
在线阅读 下载PDF
Dynamic simulation of double-cased perforation in deepwater high temperature and high-pressure oil and gas wells
7
作者 Gang Bi Fei Han +3 位作者 Jie-Min Wu Pei-Jie Yuan Shuai-Shuai Fu Ying Ma 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3482-3495,共14页
In order to ensure the penetrability of double-cased perforation in offshore oil and gas fields and to maximize the capacity of perforation completion, This study establishes a dynamic model of double-cased perforatio... In order to ensure the penetrability of double-cased perforation in offshore oil and gas fields and to maximize the capacity of perforation completion, This study establishes a dynamic model of double-cased perforation using ANSYS/LS-DYNA simulation technology. The combination of critical perforation parameters for double casing is obtained by studying the influencing factors of the jet-forming process,perforation depth, diameter, and stress changes of the inner and outer casing. The single-target perforation experiments under high-temperature and high-pressure(HTHP) conditions and ground full-scale ring target perforation tests are designed to verify the accuracy of numerical simulation results. The reduced factor is adopted as the quantitative measure of perforation depth and diameter for different types of perforation charge under different conditions. The results show that the perforation depth reduction increases with temperature and pressure, and the reduced factor is between 0.67 and 0.87 under HTHP conditions of 130℃/44 MPa and 137℃/60 MPa. Comparing the results of the numerical simulation and the full-scale test correction, the maximum error is less than 8.91%, and this numerical simulation has strong reliability. This research provides a basis for a reasonable range of double-cased perforation parameters and their optimal selection. 展开更多
关键词 Deepwater HTHP Double-cased perforation Optimization of perforation parameters dynamic simulation Full-scale perforation simulation
在线阅读 下载PDF
Unravelling biotoxicity of graphdiyne:Molecular dynamics simulation of the interaction between villin headpiece protein and graphdiyne
8
作者 Bei-Wei Zhang Bing-Quan Zhang +1 位作者 Zhi-Gang Shao Xianqiu Wu 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期441-447,共7页
Recently,there has been a growing prevalence in the utilization of graphdiyne(GDY)in the field of biomedicine,attributed to its distinctive physical structure and chemical properties.Additionally,its biocompatibility ... Recently,there has been a growing prevalence in the utilization of graphdiyne(GDY)in the field of biomedicine,attributed to its distinctive physical structure and chemical properties.Additionally,its biocompatibility has garnered increasing attention.However,there is a lack of research on the biological effects and physical mechanisms of GDYprotein interactions at the molecular scale.In this study,the villin headpiece subdomain(HP35)served as a representative protein model.Molecular dynamics simulations were employed to investigate the interaction process between the HP35 protein and GDY,as well as the structural evolution of the protein.The data presented in our study demonstrate that GDY can rapidly adsorb HP35 protein and induce denaturation to one of the a-helix structures of HP35 protein.This implies a potential cytotoxicity concern of GDY for biological systems.Compared to graphene,GDY induced less disruption to HP35 protein.This can be attributed to the presence of natural triangular vacancies in GDY,which prevents p–p stacking action and the limited interaction of GDY with HP35 protein is not conducive to the expansion of protein structures.These findings unveil the biological effects of GDY at the molecular level and provide valuable insights for the application of GDY in biomedicine. 展开更多
关键词 graphdiyne villin headpiece molecular dynamics simulation biotoxicity
在线阅读 下载PDF
Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel
9
作者 杨刚 郑庭 +1 位作者 程启昊 张会臣 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期516-525,共10页
Shear-thinning fluids have been widely used in microfluidic systems,but their internal flow mechanism is still unclear.Therefore,in this paper,molecular dynamics simulations are used to study the laminar flow of shear... Shear-thinning fluids have been widely used in microfluidic systems,but their internal flow mechanism is still unclear.Therefore,in this paper,molecular dynamics simulations are used to study the laminar flow of shear-thinning fluid in a microchannel.We validated the feasibility of our simulation method by evaluating the mean square displacement and Reynolds number of the solution layers.The results show that the change rule of the fluid system's velocity profile and interaction energy can reflect the shear-thinning characteristics of the fluids.The velocity profile resembles a top-hat shape,intensifying as the fluid's power law index decreases.The interaction energy between the wall and the fluid decreases gradually with increasing velocity,and a high concentration of non-Newtonian fluid reaches a plateau sooner.Moreover,the velocity profile of the fluid is related to the molecule number density distribution and their values are inversely proportional.By analyzing the radial distribution function,we found that the hydrogen bonds between solute and water molecules weaken with the increase in velocity.This observation offers an explanation for the shear-thinning phenomenon of the non-Newtonian flow from a micro perspective. 展开更多
关键词 molecular dynamics simulation non-Newtonian fluid MICROCHANNEL SHEAR-THINNING
在线阅读 下载PDF
Temperature effect on nanotwinned Ni under nanoindentation using molecular dynamic simulation
10
作者 何茜 徐子翼 倪玉山 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期603-612,共10页
Temperature effect on atomic deformation of nanotwinned Ni (nt-Ni) under localized nanoindentation is investigated in comparison with nanocrystalline Ni (nc-Ni) through molecular simulation.The nt-Ni exhibits enhanced... Temperature effect on atomic deformation of nanotwinned Ni (nt-Ni) under localized nanoindentation is investigated in comparison with nanocrystalline Ni (nc-Ni) through molecular simulation.The nt-Ni exhibits enhanced critical load and hardness compared to nc-Ni,where perfect,stair-rod and Shockley dislocations are activated at (111),(111) and (111) slip planes in nt-Ni compared to only SSockley dislocation nucleation at (111) and (111) slip planes of nc-Ni.The nt-Ni exhibits a less significant indentation size effect in comparison with nc-Ni due to the dislocation slips hindrance of the twin boundary.The atomic deformation associated with the indentation size effect is investigated during dislocation transmission.Different from the decreasing partial slips parallel to the indenter surface in nc-Ni with increasing temperature,the temperaturedependent atomic deformation of nt-Ni is closely related to the twin boundary:from the partial slips parallel to the twin boundary (~10 K),to increased confined layer slips and decreased twin migration(300 K–600 K),to decreased confined layer slips and increased dislocation interaction of dislocation pinning and dissociation (900 K–1200 K).Dislocation density and atomic structure types through quantitative analysis are implemented to further reveal the above-mentioned dislocation motion and atomic structure alteration.Our study is helpful for understanding the temperature-dependent plasticity of twin boundary in nanotwinned materials. 展开更多
关键词 NANOINDENTATION twin boundary plastic deformation molecular dynamics simulation
在线阅读 下载PDF
Dynamic evolution mechanism of the fracturing fracture system——Enlightenments from hydraulic fracturing physical experiments and finite element numerical simulation
11
作者 Qi-Qiang Ren Li-Fei Li +3 位作者 Jin Wang Rong-Tao Jiang Meng-Ping Li Jian-Wei Feng 《Petroleum Science》 CSCD 2024年第6期3839-3866,共28页
This study aims to elucidate the dynamic evolution mechanism of the fracturing fracture system during the exploration and development of complex oil and gas reservoirs.By integrating methods of rock mechanical testing... This study aims to elucidate the dynamic evolution mechanism of the fracturing fracture system during the exploration and development of complex oil and gas reservoirs.By integrating methods of rock mechanical testing,logging calculation,and seismic inversion technology,we obtained the current insitu stress characteristics of a single well and rock mechanical parameters.Simultaneously,significant controlling factors of rock mechanical properties were analyzed.Subsequently,by coupling hydraulic fracturing physical experiments with finite element numerical simulation,three different fracturing models were configured:single-cluster,double-cluster,and triple-cluster perforations.Combined with acoustic emission technology,the fracture initiation mode and evolution characteristics during the loading process were determined.The results indicate the following findings:(1)The extension direction and length of the fracture are significantly controlled by the direction of the maximum horizontal principal stress.(2)Areas with poor cementation and compactness exhibit complex fracture morphology,prone to generating network fractures.(3)The interlayer development of fracturing fractures is controlled by the strata occurrence.(4)Increasing the displacement of fracturing fluid enlarges the fracturing fracture length and height.This research provides theoretical support and effective guidance for hydraulic fracturing design in tight oil and gas reservoirs. 展开更多
关键词 Rockmechanical parameters Petrophysical experiments Hydraulic fracturing physical experiment Finite element numerical simulation dynamic evolution mechanism Fracturing fracture
在线阅读 下载PDF
Multi-Body Dynamics Modeling and Simulation Analysis of a Vehicle Suspension Based on Graph Theory 被引量:1
12
作者 Jun Zhang Xin Li Renjie Li 《Journal of Beijing Institute of Technology》 EI CAS 2018年第4期518-526,共9页
Multi-body dynamics,relative coordinates and graph theory are combined to analyze the structure of a vehicle suspension.The dynamic equations of the left front suspension system are derived for modeling.First,The pure... Multi-body dynamics,relative coordinates and graph theory are combined to analyze the structure of a vehicle suspension.The dynamic equations of the left front suspension system are derived for modeling.First,The pure tire theory model is used as the input criteria of the suspension multibody system dynamic model in order to simulate the suspension K&C characteristics test.Then,it is important to verify the accuracy of this model by comparing and analyzing the experimental data and simulation results.The results show that the model has high precision and can predict the performance of the vehicle.It also provides a new solution for the vehicle dynamic modeling. 展开更多
关键词 multi-body dynamics MATLAB SUSPENSION graph theory
在线阅读 下载PDF
Molecular simulation study of the microstructures and properties of pyridinium ionic liquid[HPy][BF_(4)]mixed with acetonitrile
13
作者 XU Jian-Qiang MA Zhao-Peng +2 位作者 CHENG Si LIU Zhi-Cong ZHU Guang-Lai 《原子与分子物理学报》 CAS 北大核心 2025年第4期27-32,共6页
The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this wo... The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently. 展开更多
关键词 Pyridinium ionic liquids Thermodynamic properties Molecular dynamics simulation Radial distribution functions
在线阅读 下载PDF
Rotational dynamics of neutral O_(2)driven by linearly,elliptically and circularly polarized femtosecond pulsed lasers
14
作者 Ting Xu Jin-Peng Ma +5 位作者 Xiao-Qing Hu Yin-Song Tang Si-Qi Pei Cong-Cong Jia Yong-Wu Jian-Guo Wang 《Chinese Physics B》 2025年第5期356-361,共6页
Rotational dynamics simulations of neutral O_(2)molecules driven by linearly,elliptically and circularly polarized femtosecond pulsed lasers are carried out using a full quantum time-dependent wave packet evolution me... Rotational dynamics simulations of neutral O_(2)molecules driven by linearly,elliptically and circularly polarized femtosecond pulsed lasers are carried out using a full quantum time-dependent wave packet evolution method.Here,the direction of laser propagation is set along the z axis,and the polarization plane is restricted to the xy plane.The results indicate that the alignment of O_(2)molecules in the z direction is weakly affected by varying the ellipticity when the total laser intensity is held constant.For rotation within the xy plane,the linearly polarized laser significantly excites rotational motion,with the degree of excitation increasing as the ellipticity increases.In contrast,under the influence of a circularly polarized laser,the angular distribution of O_(2)molecules in the xy plane remains isotropic.Additionally,the effects of the initial rotational quantum number,the temperature of the O_(2)molecules and the nuclear spin on laser-induced alignment are discussed. 展开更多
关键词 rotational dynamic laser alignment time-dependent wave packet simulation
在线阅读 下载PDF
Evolution and generation mechanism of retained oil in lacustrine shales:A combined ReaxFF-MD and pyrolysis simulation perspective
15
作者 Biao Sun Xiao-Ping Liu +3 位作者 Jie Liu Tian Liu Zu-Xian Hua Wen-Di Peng 《Petroleum Science》 2025年第1期29-41,共13页
To accurately investigate the evolution characteristics and generation mechanism of retained oil,the study analyzed organic-rich lacustrine shale samples from the Paleogene Kongdian Formation in Cangdong Sag,Bohai Bay... To accurately investigate the evolution characteristics and generation mechanism of retained oil,the study analyzed organic-rich lacustrine shale samples from the Paleogene Kongdian Formation in Cangdong Sag,Bohai Bay Basin.This analysis involves Rock-Eval pyrolysis,pyrolysis simulation experiments,Gas Chromatograph Mass Spectrometer(GC-MS),and reactive molecular dynamics simulations(ReaxFF).The results revealed the retained oil primarily consisted of n-alkanes with carbon numbers ranging from C14 to C36.The generation of retained oil occurred through three stages.A slow growth stage of production rate was observed before reaching the peak of oil production in Stage Ⅰ.Stage Ⅱ involved a rapid increase in oil retention,with C12-C17 and C24-C32 serving as the primary components,increasing continuously during the pyrolysis process.The generation process involved the cleavage of weak bonds,including bridging bonds(hydroxyl,oxy,peroxy,imino,amino,and nitro),ether bonds,and acid amides in the first stage(Ro=0.50%-0.75%).The carbon chains in aromatic ring structures with heteroatomic functional groups breaks in the second stage(R_(o)=0.75%-1.20%).In the third stage(R_(o)=1.20%-2.50%),the ring structures underwent ring-opening reactions to synthesize iso-short-chain olefins and radicals,while further breakdown of aliphatic chains occurred.By coupling pyrolysis simu-lation experiments and molecular simulation technology,the evolution characteristics and bond breaking mechanism of retained oil in three stages were revealed,providing a reference for the for-mation and evolution mechanism of retained oil. 展开更多
关键词 Lacustrine shale Retained oiliness evolution Pyrolysis simulation experiments ReaxFF molecular dynamics Hydrocarbon generation evolution
在线阅读 下载PDF
Dynamics in the Planar Pyrochlore Lattice: Flat Band,Domain Wall, and Anomaly
16
作者 Zijian Xiong Yining Xu Xue-Feng Zhang 《Chinese Physics Letters》 2025年第5期117-122,共6页
The quantum phase transition between Z_(2) plaquette valence bound solid(PVBS) and superfluid(SF) phases on the planar pyrochlore lattice(square ice) is under debate. To gain further insight, here, we focus on the dyn... The quantum phase transition between Z_(2) plaquette valence bound solid(PVBS) and superfluid(SF) phases on the planar pyrochlore lattice(square ice) is under debate. To gain further insight, here, we focus on the dynamical features of the hard-core Bose–Hubbard model on this lattice and study the excitation spectra by combining stochastic analytic continuation and quantum Monte Carlo simulation. In both PVBS and SF phases,a flat band with bow-tie structure is observed and can be explained by certain symmetries. At the transition point,the spectra turn to be continuous and gapless. A(2+1)-dimensional Abelian–Higgs model with mixed 't Hooft anomaly is proposed to describe the transition, where the anomaly matching predicts that the deconfinement can exist on the domain walls. From the snapshot of the spin configuration in real space, we found the existence of the domain wall. We also found that the spectrum along a specific path in momentum space from PVBS phase to the transition point can be well described by an XXZ spin chain, and the critical theory of XXZ spin chain matches the anomaly. The two-spinon continuum along this specific path implies additional domain walls(point defect) can emerge in the domain walls(line defect) and take the role of deconfinement at the transition point. 展开更多
关键词 quantum phase transition planar pyrochlore lattice square dynamicS quantum monte carlo simulation stochastic analytic continuation excitation spectra planar pyrochlore lattice flat band
在线阅读 下载PDF
Dynamic Simulation of Tracked Vehicle Using the DADS Software 被引量:1
17
作者 郭军 王申申 李晓雷 《Journal of Beijing Institute of Technology》 EI CAS 2001年第4期370-375,共6页
The track model used in the dynamic analysis and design system software is investigated. A home made tank is taken as an example to illustrate the method for modeling an integral tracked vehicle and perform the dynam... The track model used in the dynamic analysis and design system software is investigated. A home made tank is taken as an example to illustrate the method for modeling an integral tracked vehicle and perform the dynamic simulation. The obtained results have demonstrated that the simulation method has the advantage of high efficiency, more convenience and more insight into the dynamical behavior of the system. 展开更多
关键词 DADS software tracked vehicle dynamic simulation
在线阅读 下载PDF
Effect of different concentrations of surfactant on the wettability of coal by molecular dynamics simulation 被引量:26
18
作者 Junqing Meng Feifei Yin +3 位作者 Shichao Li Ruquan Zhong Zeyuan Sheng Baisheng Nie 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第4期577-584,共8页
Anionic surfactant sodium dodecyl benzene sulfonate(SDBS)at varying concentrations was selected to investigate the influence on the wettability of Zhaozhuang Coal by molecular dynamics simulation.Six groups of water/s... Anionic surfactant sodium dodecyl benzene sulfonate(SDBS)at varying concentrations was selected to investigate the influence on the wettability of Zhaozhuang Coal by molecular dynamics simulation.Six groups of water/surfactant/coal systems with different concentrations were constructed.The influence of surfactant with different concentrations on the wettability of coal was concluded by analyzing various properties from the energetic behaviors to the dynamic characteristics.The results show that the interfacial tension decreases sharply and then rises slowly with the increase of SDBS surfactant concentration,obtaining that surfactants can obviously reduce the interfacial tension.The surfactant molecules could be detected at the water/coal interface through analyzing the system’s relative concentration distribution.In addition,the difference in the wettability of surfactants on coal surfaces is caused by the spatial distribution differences of alkyl chains and the benzene ring of the surfactant molecules.And the negative interaction energy between SDBS and the coal surface indicates that adsorption process is spontaneous.Furthermore,it is of great practical significance for improving the dust reduction effect and reducing the disaster of coal dust by exploring the effects of surfactant molecules on the wettability of coal. 展开更多
关键词 Sodium dodecyl BENZENE SULFONATE Concentration WETTABILITY Interfacial tension Molecular dynamics simulation
在线阅读 下载PDF
High density gas state at water/graphite interface studied by molecular dynamics simulation 被引量:10
19
作者 王春雷 李朝霞 +3 位作者 李敬源 修鹏 胡钧 方海平 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第7期2646-2654,共9页
In this paper molecular dynamics simulations are performed to study the accumulation behaviour of N2 and H2 at water/graphite interface under ambient temperature and pressure. It finds that both N2 and H2 molecules ca... In this paper molecular dynamics simulations are performed to study the accumulation behaviour of N2 and H2 at water/graphite interface under ambient temperature and pressure. It finds that both N2 and H2 molecules can accumulate at the interface and form one of two states according to the ratio of gas molecules number to square of graphite surface from our simulation results: gas films (pancake-like) for a larger ratio and nanobubbles for a smaller ratio. In addition, we discuss the stabilities of nanobubbles at different environment temperatures. Surprisingly, it is found that the density of both kinds of gas states can be greatly increased, even comparable with that of the liquid N2 and liquid H2. The present results are expected to be helpful for the understanding of the stable existence of gas film (pancake-like) and nanobubbles. 展开更多
关键词 nanobubbles and gas film hydrophobic interface molecular dynamics simulations high density
在线阅读 下载PDF
Insight into the topology effect on the diffusion of ethene and propene in zeolites: A molecular dynamics simulation study 被引量:6
20
作者 Chuanming Wang Bowei Li +1 位作者 Yangdong Wang Zaiku Xie 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第6期914-918,共5页
Selectivity control is a difficult scientific and industrial challenge in methanol-to-olefins(MTO)conversion.It has been experimentally established that the topology of zeolite catalysts influenced the distribution of... Selectivity control is a difficult scientific and industrial challenge in methanol-to-olefins(MTO)conversion.It has been experimentally established that the topology of zeolite catalysts influenced the distribution of products.Besides the topology effect on reaction kinetics,the topology influences the diffusion of reactants and products in catalysts as well.In this work,by using COMPASS force-field molecular dynamics method,we investigated the intracrystalline diffusion of ethene and propene in four different zeolites,CHA,MFI,BEA and FAU,at different temperatures.The self-diffusion coefficients and diffusion activation barriers were calculated.A strong restriction on the diffusion of propene in CHA was observed because the self-diffusion coefficient ratio of ethene to propene is larger than 18 and the diffusion activation barrier of propene is more than 20 kJ/mol in CHA.This ratio decreases with the increase of temperature in the four investigated zeolites.The shape selectivity on products from diffusion perspective can provide some implications on the understanding of the selectivity difference between HSAPO-34 and HZSM-5 catalysts for the MTO conversion. 展开更多
关键词 methanol-to-olefins conversion diffusion zeolites ETHENE PROPENE molecular dynamics simulation
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部