期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
Effects of braking conditions on the dynamic responses of multi-axle heavy-duty vehicles coupled with pavement roughness and flexibility
1
作者 Mingjun Li Yi Jiang +3 位作者 Miao Chen Siyi Wang Lina Yang Bo Pang 《Defence Technology(防务技术)》 2025年第10期274-294,共21页
Multi-axle heavy-duty vehicles(MHVs)are essential for military equipment transport due to their safety and stability.However,braking dynamic responses between MHVs and pavement systems still remain underexplored,parti... Multi-axle heavy-duty vehicles(MHVs)are essential for military equipment transport due to their safety and stability.However,braking dynamic responses between MHVs and pavement systems still remain underexplored,particularly regarding their complex load transfer mechanisms.This paper develops an enhanced model of a multi-axle heavy-duty vehicle(MHV)coupled with the uneven and flexible pavement.An advanced coupling iterative method is proposed to solve the highly dimensional equations of the MHV-pavement coupled system.The proposed method was validated through experimental tests,with characteristic parameters of vertical accelerations showing relative errors between 0.42%and 11.80%.The coupling effect and influence mechanism of the braking process are investigated by characteristic parameters of the dynamic responses.Additionally,the influences of braking conditions and pavement parameters are analyzed in time and frequency domains in order to reveal the vibration mechanisms of the coupled system.Moreover,this study establishes a theoretical foundation for monitoring pavement health via vehicle-mounted acceleration signals,which is necessary in military transportation. 展开更多
关键词 Braking process Multi-axle heavy-duty vehicle dynamics responses Vehicle-pavement system
在线阅读 下载PDF
Effect of static transmission error on dynamic responses of spiral bevel gears 被引量:4
2
作者 唐进元 胡泽华 +1 位作者 吴丽娟 陈思雨 《Journal of Central South University》 SCIE EI CAS 2013年第3期640-647,共8页
The effect of static transmission error on nonlinear dynamic response of the spiral bevel gear system combining with time-varying stiffness and backlash was investigated.Firstly,two different control equations of the ... The effect of static transmission error on nonlinear dynamic response of the spiral bevel gear system combining with time-varying stiffness and backlash was investigated.Firstly,two different control equations of the spiral bevel gear model were adopted,where the static transmission error was expressed in two patterns as predesigned parabolic function and sine function of transmission errors.The dynamic response,bifurcation map,time domain response,phase curve and Poincare map were obtained by applying the explicit Runge-Kutta integration routine with variable-step.A comparative study was carried out and some profound phenomena were detected.The results show that there are many different kinds of tooth rattling phenomena at low speed.With the increase of speed,the system enters into stable motion without any rattling in the region(0.72,1.64),which indicates that the system with predesigned parabolic function of transmission error has preferable capability at high speed. 展开更多
关键词 spiral bevel gear static transmission error dynamic response BIFURCATION
在线阅读 下载PDF
Dynamic responses of deep underground explosions based on improved Grigorian model 被引量:1
3
作者 陈万祥 范新 +1 位作者 郭志昆 王明洋 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期323-331,共9页
It is important to investigate the dynamic behaviors of deep rocks near explosion cavity to reveal the mechanisms of deformations and fractures. Some improvements are carried out for Grigorian model with focuses on th... It is important to investigate the dynamic behaviors of deep rocks near explosion cavity to reveal the mechanisms of deformations and fractures. Some improvements are carried out for Grigorian model with focuses on the dilation effects and the relaxation effects of deep rocks, and the high pressure equations of states with Mie-Grüneisen form are also established. Numerical calculations of free field parameters for deep underground explosions are carried out based on the user subroutines which are compiled by means of the secondary development functions of LS-DYNA9703 D software. The histories of radial stress, radial velocity and radial displacement of rock particles are obtained, and the calculation results are compared with those of U.S. Hardhat nuclear test. It is indicated that the dynamic responses of free field for deep underground explosions are well simulated based on improved Grigorian model, and the calculation results are in good agreement with the data of U.S. Hardhat nuclear test. The peak values of particle velocities are consistent with those of test, but the waveform widths and the rising times are obviously greater than those without dilation effects. The attenuation rates of particle velocities are greater than the calculation results with classic plastic model, and they are consistent with the results of Hardhat nuclear test. The attenuation behaviors and the rising times of stress waves are well shown by introducing dilation effects and relaxation effects into the calculation model. Therefore, the defects of Grigorian model are avoided. It is also indicated that the initial stress has obvious influences on the waveforms of radial stress and the radial displacements of rock particles. 展开更多
关键词 underground explosion deep rock Grigorian model numerical calculation dynamic response
在线阅读 下载PDF
Crack detection using integrated signals from dynamic responses of girder bridges
4
作者 王佐才 任伟新 《Journal of Central South University》 SCIE EI CAS 2013年第6期1759-1766,共8页
An innovative approach for the identification of cracks from the dynamic responses of girder bridges was proposed.One of the key steps of the approach was to transform the dynamical responses into the equivalent stati... An innovative approach for the identification of cracks from the dynamic responses of girder bridges was proposed.One of the key steps of the approach was to transform the dynamical responses into the equivalent static quantities by integrating the excitation and response signals over time.A sliding-window least-squares curve fitting technique was then utilized to fit a cubic curve for a short segment of the girder.The moment coefficient of the cubic curve can be used to detect the locations of multiple cracks along a girder bridge.To validate the proposed method,prismatic girder bridges with multiple cracks of various depths were analyzed.Sensitivity analysis was conducted on various effects of crack depth,moving window width,noise level,bridge discretization,and load condition.Numerical results demonstrate that the proposed method can accurately detect cracks in a simply-supported or continuous girder bridges,the five-point equally weighted algorithm is recommended for practical applications,the spacing of two discernable cracks is equal to the window length,and the identified results are insensitive to noise due to integration of the initial data. 展开更多
关键词 crack identification dynamic response equivalent static sliding-window least-squares
在线阅读 下载PDF
Dynamic response of blast doors enhanced by enclosed-space TNT explosions: Experimental and numerical study
5
作者 Chenwei Wu Guokai Zhang +3 位作者 Yong He Liwang Liu Ju Liu Xiaoning Yang 《Defence Technology(防务技术)》 2025年第6期173-186,共14页
The afterburning of TNT and structural constraints in confined spaces significantly amplify the blast load,leading to severe structural damage. This study investigates the mechanisms underlying the enhanced dynamic re... The afterburning of TNT and structural constraints in confined spaces significantly amplify the blast load,leading to severe structural damage. This study investigates the mechanisms underlying the enhanced dynamic response of reinforced concrete blast doors with four-sided restraints in confined space. Explosion tests with TNT charges ranging from 0.15 kg to 0.4 kg were conducted in a confined space,capturing overpressure loads and the dynamic response of the blast door. An internal explosion model incorporating the afterburning effect was developed using LS-DYNA software and validated against experimental data. The results reveal that the TNT afterburning effect amplifies both the initial peak overpressure and the quasi-static overpressure, resulting in increased deformation of the blast door.Within the 0.15-0.4 kg charge range, the initial overpressure peak and quasi-static overpressure increased by an average of 1.79 times and 2.21 times, respectively. Additionally, the afterburning effect enhanced the blast door's deflection by 177%. Compared to open-space scenarios, the cumulative deflection of the blast door due to repeated shock wave impacts is significantly greater in confined spaces. Furthermore, the quasi-static pressure arising from the structural constraints sustains the blast door's deflection at a high level. 展开更多
关键词 Internal explosion Afterburning effect Constraint effect Reinforced concrete blast door dynamic response Enhancement effect
在线阅读 下载PDF
Investigation on dynamic response of liquid-filled cylindrical shellstructures under the action of combined blast and fragments loading
6
作者 Zhujie Zhao Hailiang Hou +4 位作者 Dian Li Xiaowei Wu Yongqing Li Zhenghan Chen Linzhi Wu 《Defence Technology(防务技术)》 2025年第7期334-354,共21页
This study designs four types of liquid-filled cylindrical shell structures to investigate their protection characteristics against explosive shock waves and high-speed fragments.Bare charge and charge-driven prefabri... This study designs four types of liquid-filled cylindrical shell structures to investigate their protection characteristics against explosive shock waves and high-speed fragments.Bare charge and charge-driven prefabricated fragments are employed to examine the damage under blast shock waves and combined blast and fragments loading on various liquid-filled cylindrical shell structures.The test results are compared to numerical calculations and theoretical analysis for the structure's deformation,the liquid medium's movement,and the pressure waves'propagation characteristics under different liquid-filling methods.The results showed that the filling method influences the blast protection and the struc-ture's energy absorption performance.The external filling method reduces the structural deformation,and the internal filling method increases the damage effect.The gapped internal filling method improves the structure's energy absorption efficiency.The pressure wave loading on the liquid-filled cylindrical shell structure differs depending on filling methods.Explosive shock waves and high-speed fragments show a damage enhancement effect on the liquid-filled cylindrical shell structure,depending on the thickness of the internal liquid container layer.The specific impulse on the inner surface of the cylindrical shell positively correlates to the radial deformation of the cylindrical shell structure,and the external liquid layer limits the radial structural deformation. 展开更多
关键词 Blast wave Combined blast and fragments loading Filling method Liquid-filled structure dynamic response
在线阅读 下载PDF
Dynamic mechanical characteristics of post-peak sandstone under three-dimensional cyclic impact
7
作者 ZHANG Jun-wen ZHANG Yang +7 位作者 LI Shi-fang SONG Zhi-xiang DONG Xu-kai WU Shao-kang FAN Wen-bing ZHOU Yan SANG Pei-miao LI Ning 《Journal of Central South University》 2025年第8期2958-2978,共21页
At present,the surrounding rock of the deep mine roadway is prone to post-peak stress under the action of high stress,and secondary rock burst disaster is prone to occur under complex stress disturbance.According to i... At present,the surrounding rock of the deep mine roadway is prone to post-peak stress under the action of high stress,and secondary rock burst disaster is prone to occur under complex stress disturbance.According to incomplete statistics,as of 2023,80%of coal mine rock bursts accidents in China occur in mining roadway.In view of this phenomenon,the cyclic impact test of post-peak sandstone is designed,focusing on the post-peak stress state of sandstone,and exploring the post-peak dynamic response of sandstone.The post-peak sandstone specimens were prepared by a uniaxial compressor,and then cyclic impact tests were carried out on the post-peak sandstone under different coaxial pressure conditions by an improved separated Hopkinson equipment.The results show that:1)The number of impact times required for sandstone failure after peak decreased with the increase of axial pressure,indicating that the impact tendency of sandstone after peak decreased under lower axial pressure.On the contrary,the post-peak sandstone had strong impact tendency under higher axial pressure;2)The higher the axial pressure,the lower the dynamic strength of the post-peak sandstone,indicating that the axial pressure promoted the failure process of the post peak sandstone;3)It was a nonlinear evolution of a quadratic polynomial function between the dissipation-energy release rate and axial pressure;4)Shear failure occurred mainly in post-peak impact sandstone with the increased axial pressure,and the composite failure of intergranular failure and transgranular failure changed to single intergranular failure at the microscopic level.The research shows that when the roadway surrounding rock was in the post-peak stress state,reducing the static stress was the key to prevent the secondary ground pressure disaster.The research results provide a theoretical basis for the prevention and control of roadway rock burst disaster under high ground stress environment,and promote the research and exploration of post-peak mechanical properties of coal and rock. 展开更多
关键词 post-peak impact sandstone 3D cyclic impact dynamic response energy dissipation fracture mechanism
在线阅读 下载PDF
Experimental study on the dynamic response of HSTM under combined shock waves and sub-millimeter particle swarms loading
8
作者 RuiJun Fan XiaoFeng Wang +3 位作者 ShaoHong Wang JinYing Wang He Huang AiGuo Pi 《Defence Technology(防务技术)》 2025年第10期230-248,共19页
Low collateral damage weapons achieve controlled personnel injury through the coupling of shock waves and particle swarms,where the particle swarms arise from the high-explosive dispersion of compacted metal particle ... Low collateral damage weapons achieve controlled personnel injury through the coupling of shock waves and particle swarms,where the particle swarms arise from the high-explosive dispersion of compacted metal particle ring.To investigate the dynamic response of the human target under combined shock waves and particle swarms loading,a physical human surrogate torso model(HSTM)was developed,and the dynamic response test experiment was conducted under the combined loading.The effects of particle size on the loading parameters,the damage patterns of the ballistic plate and HSTM,and the dynamic response parameters of the HSTM with and without protection are mainly analyzed.Our findings revealed that particle swarms can effectively delay the shock wave attenuation,especially the best effect when the particle size was 0.28–0.45 mm.The ballistic plate mainly exhibited dense perforation of the outer fabric and impacted crater damage of ceramic plates,whereas the unprotected HSTM was mainly dominated by high-density and small-size ballistic cavity group damage.The peak values of the dynamic response parameters for the HSTM under combined loading were significantly larger than those under bare charge loading,with multiple peaks observed.Under unprotected conditions,the peak acceleration of skeletons and peak pressure of organs increased with the particle size.Under protected conditions,the particle size,the number of particles hit,and the fit of the ballistic plate to the HSTM together affected the dynamic response parameters of the HSTM. 展开更多
关键词 Low collateral damage Particle swarms dynamic response Human surrogate torso model
在线阅读 下载PDF
Effect of cross-wind on spatial vibration responses of train and track system 被引量:4
9
作者 向俊 赫丹 曾庆元 《Journal of Central South University》 SCIE EI CAS 2009年第3期520-524,共5页
By taking cross-wind forces acting on trains into consideration, a dynamic analysis method of the cross-wind and high-speed train and slab track system was proposed on the basis of the analysis theory of spatial vibra... By taking cross-wind forces acting on trains into consideration, a dynamic analysis method of the cross-wind and high-speed train and slab track system was proposed on the basis of the analysis theory of spatial vibration of high-speed train and slab track system. The corresponding computer program was written by FORTRAN language. The dynamic responses of the high-speed train and slab track under cross-wind action were calculated. Meanwhile, the effects of the cross-wind on the dynamic responses of the system were also analyzed. The results show that the cross-wind has a significant influence on the lateral and vertical displacement responses of the car body, load reduction factor and overturning factor. For example, the maximum lateral displacement responses of the car body of the first trailer with and without cross-wind forces are 32.10 and 1.60 mm, respectively. The maximum vertical displacement responses of the car body of the first trailer with and without cross-wind forces are 6.60 and 3.29 mm, respectively. The maximum wheel load reduction factors of the first trailer with and without cross-wind forces are 0.43 and 0.22, respectively. The maximum overturning factors of the first trailer with and without cross-wind forces are 0.28 and 0.08, respectively. The cross-wind affects the derailment factor and lateral Sperling factor of the moving train to a certain extent. However, the lateral and vertical displacement responses of rails with the crnss-wind are almost the same as those without the cross-wind. The method presented and the corresponding computer program can be used to calculate the interaction between trains and track in cross-wind. 展开更多
关键词 slab track high-speed train cross-wind spatial vibration DISPLACEMENT dynamic responses
在线阅读 下载PDF
Dynamic response of cylindrical cavity to anti-plane impact load by using analytical approach 被引量:4
10
作者 翟朝娇 夏唐代 +1 位作者 杜国庆 丁智 《Journal of Central South University》 SCIE EI CAS 2014年第1期405-415,共11页
The transient response of an unlimited cylindrical cavity buried in the infinite elastic soil subjected to an anti-plane impact load along the cavern axis direction was studied.Using Laplace transform combining with c... The transient response of an unlimited cylindrical cavity buried in the infinite elastic soil subjected to an anti-plane impact load along the cavern axis direction was studied.Using Laplace transform combining with contour integral of the Laplace inverse transform specifically,the general analytical expressions of the soil displacement and stress are obtained in the time domain,respectively.And the numerical solutions of the problem computed by analytical expressions are presented.In the time domain,the dynamic responses of the infinite elastic soil are analyzed,and the calculation results are compared with those from numerical inversion proposed by Durbin and the static results.One observes good agreement between analytical and numerical inversion results,lending the further support to the method presented.Finally,some valuable shear wave propagation laws are gained: the displacement of the soil remains zero before the wave arrival,and after the shear wave arrival,the stress and the displacement at this point increase abruptly,then reduce and tend to the static value gradually at last.The wave attenuates along the radial,therefore the farther the wave is from the source,the smaller the stress and the displacement are,and the stress and the displacement are just functions of the radial distance from the axis. 展开更多
关键词 cylindrical cavity ANTI-PLANE Laplace transform contour integral impact load dynamic responses
在线阅读 下载PDF
A distributed dynamic mesh model of a helical gear pair with tooth profile errors 被引量:8
11
作者 WANG Qi-bin MA Hong-bo +1 位作者 KONG Xian-guang ZHANG Yi-min 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第2期287-303,共17页
A dynamic model of a helical gear rotor system is proposed.Firstly,a generally distributed dynamic model of a helical gear pair with tooth profile errors is developed.The gear mesh is represented by a pair of cylinder... A dynamic model of a helical gear rotor system is proposed.Firstly,a generally distributed dynamic model of a helical gear pair with tooth profile errors is developed.The gear mesh is represented by a pair of cylinders connected by a series of springs and the stiffness of each spring is equal to the effective mesh stiffness.Combining the gear dynamic model with the rotor-bearing system model,the gear-rotor-bearing dynamic model is developed.Then three cases are presented to analyze the dynamic responses of gear systems.The results reveal that the gear dynamic model is effective and advanced for general gear systems,narrow-faced gear,wide-faced gear and gear with tooth profile errors.Finally,the responses of an example helical gear system are also studied to demonstrate the influence of the lead crown reliefs and misalignments.The results show that both of the lead crown relief and misalignment soften the gear mesh stiffness and the responses of the gear system increase with the increasing lead crown reliefs and misalignments. 展开更多
关键词 gear distributed dynamic model tooth profile errors helical gear pair rotor system dynamic response
在线阅读 下载PDF
Experimental investigation on dynamic response and damage models of circular RC columns subjected to underwater explosions 被引量:8
12
作者 Tie-shuan Zhuang Ming-yang Wang +3 位作者 Jun Wu Cheng-yu Yang Tao Zhang Chao Gao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第4期856-875,共20页
Reinforced concrete(RC) columns are widely used as supporting structures for high-piled wharfs.The study of damage model of a RC column due to underwater explosion is a critical issue to assess the wharfs antiknock se... Reinforced concrete(RC) columns are widely used as supporting structures for high-piled wharfs.The study of damage model of a RC column due to underwater explosion is a critical issue to assess the wharfs antiknock security.In this study,the dynamic response and damage model of circular RC columns subjected to underwater explosions were investigated by means of scaled-down experiment models.Experiments were carried out in a 10.0 m diameter tank with the water depth of 2.25 m,under different explosive quantities(0.025 kg-1.6 kg),stand-off distances(0.0 m-7.0 m),and detonation depths(0.25 m-2.0 m).The shock wave load and dynamic response of experiment models were measured by configuring sensors of pressure,acceleration,strain,and displacement.Then,the load distribution characteristics,time history of test data,and damage models related to present conditions were obtained and discussed.Three damage models,including bending failure,bending-shear failure and punching failure,were identified.In addition,the experie nce model of shock wave loads on the surface of a RC column was proposed for engineering application. 展开更多
关键词 Underwater explosion Reinforced concrete(RC)columns Load distribution characteristics dynamic response Damage models
在线阅读 下载PDF
Influence of thermal contact resistance on dynamic response of bilayered saturated porous strata 被引量:7
13
作者 WEN Min-jie TIAN Yi +2 位作者 WU Wen-bing WANG Kui-hua XIONG Hou-ren 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第6期1823-1839,共17页
Porous materials can be found in a variety of geophysical and engineering applications.The existence of thermal contact resistance at the interface between bilayered saturated porous strata would result in a significa... Porous materials can be found in a variety of geophysical and engineering applications.The existence of thermal contact resistance at the interface between bilayered saturated porous strata would result in a significant temperature difference at the interface.An attempt is made to study the thermo-hydro-mechanical coupling dynamic response of bilayered saturated porous strata with thermal contact resistance and elastic wave impedance.The corresponding analytical solutions for the dynamic response of bilayered saturated porous strata under a harmonic thermal load are derived by the operator decomposition method,and their rationality is verified by comparing them with existing solutions.The influences of thermal contact resistance,thermal conductivity ratio,and porosity ratio on the dynamic response of bilayered saturated porous strata are systematically investigated.Outcomes disclose that with the increase of thermal contact resistance,the displacement,pore water pressure and stress decrease gradually,and the temperature jump at the interface between two saturated porous strata increases. 展开更多
关键词 dynamic response bilayered saturated porous strata thermal contact resistance generalized thermoelastic theory elastic wave impedance
在线阅读 下载PDF
Force chains based mesoscale simulation on the dynamic response of Al-PTFE granular composites 被引量:6
14
作者 Le Tang Chao Ge +2 位作者 Huan-guo Guo Qing-bo Yu Hai-fu Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第1期56-63,共8页
Force chains based mesoscale simulation is conducted to investigate the response behavior of aluminumpolytetrafluoroethylene(Al-PTFE)granular composites under a low-velocity impact.A two-dimensional model followed the... Force chains based mesoscale simulation is conducted to investigate the response behavior of aluminumpolytetrafluoroethylene(Al-PTFE)granular composites under a low-velocity impact.A two-dimensional model followed the randomly normal distribution of real Al particles size is developed.The dynamic compressive process of Al-PTFE composites with varied Al mass fraction is simulated and validated against the experiments.The results indicate that,force chains behavior governed by the number and the size of agglomerated Al particles,significantly affects the impact response of the material.The failure mode of the material evolves from shear failure of matrix to debonding failure of particles with increasing density.A high crack area of the material is critical mechanism to arouse the initiation reaction.The damage maintained by force chains during large plastic strain builds up more local stresses concentration to enhance a possible reaction performance.In addition,simulation is performed with identical mass fraction but various Al size distribution to explore the effects of size centralization and dispersion on the mechanical properties of materials.It is found that smaller sized Al particle of composites are more preferred than its bulky material in ultimate strength.Increasing dispersed degree is facilitated to create stable force chains in samples with comparable particle number.The simulation studies provide further insights into the plastic deformation,failure mechanism,and possible energy release capacity for Al-PTFE composites,which is helpful for further design and application of reactive materials. 展开更多
关键词 Al-PTFE Granular composites Mesoscale simulation dynamic response Force chains
在线阅读 下载PDF
Nonlinear finite element analysis of effect of seismic waves on dynamic response of Shiziping dam 被引量:7
15
作者 DING Xuan-ming LIU Han-long +1 位作者 YU Tao KONG Gang-qiang 《Journal of Central South University》 SCIE EI CAS 2013年第8期2323-2332,共10页
Many high earth-rockfill dams are constructed in the west of China. The seismic intensity at the dam site is usually very high, thus it is of great importance to ensure the safety of the dam in meizoseismal area. A 3D... Many high earth-rockfill dams are constructed in the west of China. The seismic intensity at the dam site is usually very high, thus it is of great importance to ensure the safety of the dam in meizoseismal area. A 3D FEM model is established to analyze the seismic responses of Shiziping earth-rockfill dam. The nonlinear elastic Duncan-Chang constitutive model and the equivalent viscoelastic constitutive model are used to simulate the static and dynamic stress strain relationships of the dam materials, respectively. Four groups of seismic waves are inputted from the top of the bedrock to analyze the dynamic responses of the dam. The numerical results show that the calculated dynamic magnification factors display a good consistency with the specification values. The site spectrum results in larger acceleration response than the specification spectrum. The analysis of relative dynamic displacement indicates that the displacement at the downstream side of the dam is larger than that at the upstream side. The displacement response reduces from the center of river valley to two banks. The displacement responses corresponding to the specification spectrum are a little smaller than those corresponding to the site spectrum. The analysis of shear stress indicates that a large shear stress area appears in the upstream overburden layer, where the shear stress caused by site waves is larger than that caused by specification waves. The analysis of dynamic principal stress indicates that the minimum dynamic stresses in corridor caused by specification and site waves have little difference. The maximum and minimum dynamic stresses are relatively large at two sides. The largest tensile stress occurs at two sides of the floor of grouting corridor, which may result in the crack near the corridor side. The numerical results present good consistency with the observation data of the grouting corridor in Wenchuan earthquake. 展开更多
关键词 finite element method earth-rockfill dam dynamic response acceleration response seismic wave
在线阅读 下载PDF
Finite difference method for dynamic response analysis of anchorage system 被引量:6
16
作者 言志信 段建 +3 位作者 江平 刘子振 赵红亮 黄文贵 《Journal of Central South University》 SCIE EI CAS 2014年第3期1098-1106,共9页
Based on some assumptions, the dynamic analysis model of anchorage system is established. The dynamic governing equation is expressed as finite difference format and programmed by using MATLAB language. Compared with ... Based on some assumptions, the dynamic analysis model of anchorage system is established. The dynamic governing equation is expressed as finite difference format and programmed by using MATLAB language. Compared with theoretical method, the finite difference method has been verified to be feasible by a case study. It is found that under seismic loading, the dynamic response of anchorage system is synchronously fluctuated with the seismic vibration. The change of displacement amplitude of material points is slight, and comparatively speaking, the displacement amplitude of the outside point is a little larger than that of the inside point, which shows amplification effect of surface. While the axial force amplitude transforms considerably from the inside to the outside. It increases first and reaches the peak value in the intersection between the anchoring section and free section, then decreases slowly in the free section. When considering damping effect of anchorage system, the finite difference method can reflect the time attenuation characteristic better, and the calculating result would be safer and more reasonable than the dynamic steady-state theoretical method. What is more, the finite difference method can be applied to the dynamic response analysis of harmonic and seismic random vibration for all kinds of anchor, and hence has a broad application prospect. 展开更多
关键词 anchorage system dynamic response finite difference method attenuation characteristic
在线阅读 下载PDF
A theoretical analysis of vertical dynamic response of large-diameter pipe piles in layered soil 被引量:5
17
作者 丁选明 郑长杰 刘汉龙 《Journal of Central South University》 SCIE EI CAS 2014年第8期3327-3337,共11页
Considering the viscous damping of the soil and soil-pile vertical coupled vibration,a computational model of large-diameter pipe pile in layered soil was established.The analytical solution in frequency domain was de... Considering the viscous damping of the soil and soil-pile vertical coupled vibration,a computational model of large-diameter pipe pile in layered soil was established.The analytical solution in frequency domain was derived by Laplace transformation method.The responses in time domain were obtained by inverse Fourier transformation.The results of the analytical solution proposed agree well with the solutions in homogenous soil.The effects of the shear modulus and damping coefficients of the soil at both outer and inner sides of the pipe pile were researched.The results indicate that the shear modulus of the outer soil has more influence on velocity admittance than the inner soil.The smaller the shear modulus,the larger the amplitude of velocity admittance.The velocity admittance weakened by the damping of the outer soil is more obvious than that weakened by the damping of the inner soil.The displacements of the piles with the same damping coefficients of the outer soil have less difference.Moreover,the effects of the distribution of soil layers are analyzed.The results indicate that the effect of the upper soil layer on dynamic response of the pipe pile is more obvious than that of the bottom soil layer.A larger damping coefficient of the upper layer results in a smaller velocity admittance.The dynamic response of the pipe pile in layered soil is close to that of the pipe pile in homogenous soil when the properties of the upper soil layer are the same. 展开更多
关键词 dynamic response large-diameter pipe pile layered soil velocity admittance dynamic stiffness
在线阅读 下载PDF
Dynamic response and failure behavior of rock under static-dynamic loading 被引量:7
18
作者 陈枫 马春德 徐纪成 《Journal of Central South University of Technology》 2005年第3期354-358,共5页
Dynamic response and failure behavior of rock under static-dynamic loading were studied. The effects of initial static load on the total energy dissipated during the failure process of specimen were analyzed. To simul... Dynamic response and failure behavior of rock under static-dynamic loading were studied. The effects of initial static load on the total energy dissipated during the failure process of specimen were analyzed. To simulate the engineering situation that in-situ rock experienced and obtain the dynamic loading with an intermediate strain rate, a low cycle fatigue load with the frequency from 0.5 to 5 Hz was adopted by servo-controlled Instron material testing system. The results show that the obtained strain rate increase with the increase of load frequency. The initial static load has great influence on both the energy and dynamic response of rock. Both the energy and the maximum failure load P_f decreases with the increase of initial static load. P_f under the static-dynamic loading is larger than that under only the static loading but less than that under only the dynamic loading. The load-displacement curves become nonlinear as the pre-added static load reaches the transition point which is about one third of static strength. With the increase of initial static load, Young’s modulus decreases and poisson ratio increases. It shows that rock has a lower strength and a tendency to soften under a higher initial static load. Rock may be broken more easily static-dynamic loading than under only the dynamic loading. The proposed method is useful in the investigation of constitutive relationship and failure behavior of rock under quasi-dynamic loading. 展开更多
关键词 dynamic response ROCK static-dynamic loading strain rate
在线阅读 下载PDF
Microscopic defects formation and dynamic mechanical response analysis of Q345 steel plate subjected to explosive load 被引量:2
19
作者 Zhengqing Zhou Zechen Du +6 位作者 Yulong Zhang Guili Yang Ruixiang Wang Yuzhe Liu Peize Zhang Yaxin Zhang Xiao Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期430-442,共13页
As the basic protective element, steel plate had attracted world-wide attention because of frequent threats of explosive loads. This paper reports the relationships between microscopic defects of Q345 steel plate unde... As the basic protective element, steel plate had attracted world-wide attention because of frequent threats of explosive loads. This paper reports the relationships between microscopic defects of Q345 steel plate under the explosive load and its macroscopic dynamics simulation. Firstly, the defect characteristics of the steel plate were investigated by stereoscopic microscope(SM) and scanning electron microscope(SEM). At the macroscopic level, the defect was the formation of cave which was concentrated in the range of 0-3.0 cm from the explosion center, while at the microscopic level, the cavity and void formation were the typical damage characteristics. It also explains that the difference in defect morphology at different positions was the combining results of high temperature and high pressure. Secondly, the variation rules of mechanical properties of steel plate under explosive load were studied. The Arbitrary Lagrange-Euler(ALE) algorithm and multi-material fluid-structure coupling method were used to simulate the explosion process of steel plate. The accuracy of the method was verified by comparing the deformation of the simulation results with the experimental results, the pressure and stress at different positions on the surface of the steel plate were obtained. The simulation results indicated that the critical pressure causing the plate defects may be approximately 2.01 GPa. On this basis, it was found that the variation rules of surface pressure and microscopic defect area of the Q345 steel plate were strikingly similar, and the corresponding mathematical relationship between them was established. Compared with Monomolecular growth fitting models(MGFM) and Logistic fitting models(LFM), the relationship can be better expressed by cubic polynomial fitting model(CPFM). This paper illustrated that the explosive defect characteristics of metal plate at the microscopic level can be explored by analyzing its macroscopic dynamic mechanical response. 展开更多
关键词 Explosive load Q345 steel Micro defect Finite element simulation dynamic response Data fitting
在线阅读 下载PDF
Responses of HFR-LWC beams under close-range blast loadings accompanying membrane action 被引量:2
20
作者 Wan-xiang Chen Li-sheng Luo +1 位作者 Zhi-kun Guo Peng Yuan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第6期1167-1187,共21页
The load-carrying capacities and failure patterns of reinforced concrete components can be significantly changed by membrane effects.However,limited work has been carried out to investigate the blast resistance of Hyb... The load-carrying capacities and failure patterns of reinforced concrete components can be significantly changed by membrane effects.However,limited work has been carried out to investigate the blast resistance of Hybrid Fiber Reinforced Lightweight Aggregate Concrete(HFR-LWC)members accompanying membrane action.This paper presents a theoretical approach to quantitatively depicting the membrane behavior and its contribution on the behavior of HFR-LWC beams under close-range blast loadings,and the suitability of the proposed model is validated by a series of field tests.An improved Single-Degree-of-Freedom(SDOF)model was employed to describe the dynamic responses of beam-like members under blast loadings accompanying membrane action,where the mass-load coefficient is determined according to the nonuniformly distributed load induced by close-range explosion,and the membrane action is characterized by an in-plane(longitudinal)force and a resisting moment.The elastoplastic and recovery responses of HFR-LWC beams under the combined action of blast load and membrane force were analyzed by the promoted model.A specially built end-constrain clamp was developed to provide membrane action for the beam member when they are subjected to blast load simultaneously.It is demonstrated that the analytical displacement-time histories are in good agreement with experimental results before peak deflections and that the improved SDOF model is an acceptable tool for predicting the behavior of HFR-LWC beams under blast loadings accompanying membrane action. 展开更多
关键词 Blast load Membrane action HFR-LWC beam dynamic response Experimental study
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部