As the protective component,steel plate had attracted extensive attention because of frequently threats of explosive loads.In this paper,the evolution of microstructure and the mechanism of damage in the quasi-crackin...As the protective component,steel plate had attracted extensive attention because of frequently threats of explosive loads.In this paper,the evolution of microstructure and the mechanism of damage in the quasi-cracking area of steel plate subjected to explosive load were discussed and the relationships between micro defects and dynamic mechanical response were revealed.After the explosion experiment,five observation points were selected equidistant from the quasi-cracking area of the section of the steel plate along the thickness direction,and the characteristics of micro defects at the observation points were analyzed by optical microscope(OM),scanning electron microscope(SEM) and electron backscattered diffraction(EBSD).The observation result shows that many slip bands(SBs) appeared,and the grain orientation changed obviously in the steel plate,the two were the main damage types of micro defects.In addition,cracks,peeling pits,grooves and other lager micro defects were appeared in the lower area of the plate.The stress parameters of the observation points were obtained through an effective numerical model.The mechanism of damage generation and crack propagation in the quasicracking area were clarified by comparing the specific impulse of each observation point with the corresponding micro defects.The result shows that the generation and expansion of micro defects are related to the stress area(i.e.the upper compression area,the neutral plane area,and the lower tension area).The micro defects gather and expand at the grain boundary,and will become macroscopic damage under the continuous action of tensile stress.Besides,the micro defects at the midpoint of the section of the steel plate in the direction away from the explosion center(i.e.the horizontal direction) were also studied.It was found that the specific impulse at these positions were much smaller than that in the thickness direction,the micro defects were only SBs and a few micro cracks,and the those decreased with the increase of the distance from the explosion center.展开更多
The main goal of this study is to use higher-order isogeometric analysis(IGA)to study the dynamic response of sandwich shells with an auxetic honeycomb core and two different functionally graded materials(FGM)skin lay...The main goal of this study is to use higher-order isogeometric analysis(IGA)to study the dynamic response of sandwich shells with an auxetic honeycomb core and two different functionally graded materials(FGM)skin layers(namely honeycomb-FGS shells)subjected to dynamic loading.Touratier's non-polynomial higher-order shear deformation theory(HSDT)is used due to its simplicity and performance.The governing equation is derived from Hamilton's principle.After verifying the present approach,the effect of input parameters on the dynamic response of honeycomb-FGS shells is carried out in detail.展开更多
The electrodynamic behavior of a medium caliber railgun launcher has been studied based on an electromechanical coupling model,which uses a unified modeling method for both electromagnetic and electromechanical field....The electrodynamic behavior of a medium caliber railgun launcher has been studied based on an electromechanical coupling model,which uses a unified modeling method for both electromagnetic and electromechanical field.This model adopts a material equivalent method to simulating the sliding contact behavior for the in-bore armature.An embedded node encoding program during field meshing operation provides good load transfer accuracy between electromagnetic field and mechanical field.Dynamic properties of in-bore magnetic field are firstly simulated and a subsequent dynamic analysis is conducted by mapping element results from electromagnetic analysis step to structure analysis step.The electromechanical-elastic response of the barrel is studied under the excitation current.The numerical model has shown reliability compared to experimental results.展开更多
Porous materials can be found in a variety of geophysical and engineering applications.The existence of thermal contact resistance at the interface between bilayered saturated porous strata would result in a significa...Porous materials can be found in a variety of geophysical and engineering applications.The existence of thermal contact resistance at the interface between bilayered saturated porous strata would result in a significant temperature difference at the interface.An attempt is made to study the thermo-hydro-mechanical coupling dynamic response of bilayered saturated porous strata with thermal contact resistance and elastic wave impedance.The corresponding analytical solutions for the dynamic response of bilayered saturated porous strata under a harmonic thermal load are derived by the operator decomposition method,and their rationality is verified by comparing them with existing solutions.The influences of thermal contact resistance,thermal conductivity ratio,and porosity ratio on the dynamic response of bilayered saturated porous strata are systematically investigated.Outcomes disclose that with the increase of thermal contact resistance,the displacement,pore water pressure and stress decrease gradually,and the temperature jump at the interface between two saturated porous strata increases.展开更多
板结构与其他构件的装配关系可用不同的边界条件进行模拟,然而针对不同边界条件的板结构进行动力学特性分析,目前缺乏统一的数学建模方法。以混合弹性边界条件下加筋、开孔的板类结构的横向振动为例,利用Rayleigh-Ritz法和模态叠加法求...板结构与其他构件的装配关系可用不同的边界条件进行模拟,然而针对不同边界条件的板结构进行动力学特性分析,目前缺乏统一的数学建模方法。以混合弹性边界条件下加筋、开孔的板类结构的横向振动为例,利用Rayleigh-Ritz法和模态叠加法求解矩形加筋多孔板在简谐激励下的动力学响应问题。采用将开孔板与加强筋沿交界面进行分离,结合改进的傅里叶级数设定开孔板的横向振动位移函数,利用不同刚度弹簧模拟混合弹性边界,推导加筋矩形开多孔板和边界弹簧系统的动能与势能,求解其在简谐激励下的动力学响应。经对比,理论计算结果与有限元(Finite Element Method,FEM)结果吻合良好。此外,用同样的方法分析不同孔尺寸对结构固有频率和响应的影响。研究发现,可通过改变加筋板的开孔形状、尺寸对结构的振动特性进行调整。研究成果可为混合弹性边界板结构动力分析提供一种新的技术途径,可以简化加筋开孔板结构动力分析的步骤。展开更多
基金supported by the Science and Technology Project of Fire Rescue Bureau of Ministry of Emergency Management (Grant No.2022XFZD05)S&T Program of Hebei(Grant No.22375419D)National Natural Science Foundation of China (Grant No.11802160)。
文摘As the protective component,steel plate had attracted extensive attention because of frequently threats of explosive loads.In this paper,the evolution of microstructure and the mechanism of damage in the quasi-cracking area of steel plate subjected to explosive load were discussed and the relationships between micro defects and dynamic mechanical response were revealed.After the explosion experiment,five observation points were selected equidistant from the quasi-cracking area of the section of the steel plate along the thickness direction,and the characteristics of micro defects at the observation points were analyzed by optical microscope(OM),scanning electron microscope(SEM) and electron backscattered diffraction(EBSD).The observation result shows that many slip bands(SBs) appeared,and the grain orientation changed obviously in the steel plate,the two were the main damage types of micro defects.In addition,cracks,peeling pits,grooves and other lager micro defects were appeared in the lower area of the plate.The stress parameters of the observation points were obtained through an effective numerical model.The mechanism of damage generation and crack propagation in the quasicracking area were clarified by comparing the specific impulse of each observation point with the corresponding micro defects.The result shows that the generation and expansion of micro defects are related to the stress area(i.e.the upper compression area,the neutral plane area,and the lower tension area).The micro defects gather and expand at the grain boundary,and will become macroscopic damage under the continuous action of tensile stress.Besides,the micro defects at the midpoint of the section of the steel plate in the direction away from the explosion center(i.e.the horizontal direction) were also studied.It was found that the specific impulse at these positions were much smaller than that in the thickness direction,the micro defects were only SBs and a few micro cracks,and the those decreased with the increase of the distance from the explosion center.
基金funded by Le Quy Don Technical University Research Found (Grant No.2023QHT.03)。
文摘The main goal of this study is to use higher-order isogeometric analysis(IGA)to study the dynamic response of sandwich shells with an auxetic honeycomb core and two different functionally graded materials(FGM)skin layers(namely honeycomb-FGS shells)subjected to dynamic loading.Touratier's non-polynomial higher-order shear deformation theory(HSDT)is used due to its simplicity and performance.The governing equation is derived from Hamilton's principle.After verifying the present approach,the effect of input parameters on the dynamic response of honeycomb-FGS shells is carried out in detail.
文摘The electrodynamic behavior of a medium caliber railgun launcher has been studied based on an electromechanical coupling model,which uses a unified modeling method for both electromagnetic and electromechanical field.This model adopts a material equivalent method to simulating the sliding contact behavior for the in-bore armature.An embedded node encoding program during field meshing operation provides good load transfer accuracy between electromagnetic field and mechanical field.Dynamic properties of in-bore magnetic field are firstly simulated and a subsequent dynamic analysis is conducted by mapping element results from electromagnetic analysis step to structure analysis step.The electromechanical-elastic response of the barrel is studied under the excitation current.The numerical model has shown reliability compared to experimental results.
基金Projects(52108347,52178371)supported by the National Natural Science Foundation of ChinaProject(LQ22E080010)supported by the Exploring Youth Project of Zhejiang Natural Science Foundation,China。
文摘Porous materials can be found in a variety of geophysical and engineering applications.The existence of thermal contact resistance at the interface between bilayered saturated porous strata would result in a significant temperature difference at the interface.An attempt is made to study the thermo-hydro-mechanical coupling dynamic response of bilayered saturated porous strata with thermal contact resistance and elastic wave impedance.The corresponding analytical solutions for the dynamic response of bilayered saturated porous strata under a harmonic thermal load are derived by the operator decomposition method,and their rationality is verified by comparing them with existing solutions.The influences of thermal contact resistance,thermal conductivity ratio,and porosity ratio on the dynamic response of bilayered saturated porous strata are systematically investigated.Outcomes disclose that with the increase of thermal contact resistance,the displacement,pore water pressure and stress decrease gradually,and the temperature jump at the interface between two saturated porous strata increases.
文摘板结构与其他构件的装配关系可用不同的边界条件进行模拟,然而针对不同边界条件的板结构进行动力学特性分析,目前缺乏统一的数学建模方法。以混合弹性边界条件下加筋、开孔的板类结构的横向振动为例,利用Rayleigh-Ritz法和模态叠加法求解矩形加筋多孔板在简谐激励下的动力学响应问题。采用将开孔板与加强筋沿交界面进行分离,结合改进的傅里叶级数设定开孔板的横向振动位移函数,利用不同刚度弹簧模拟混合弹性边界,推导加筋矩形开多孔板和边界弹簧系统的动能与势能,求解其在简谐激励下的动力学响应。经对比,理论计算结果与有限元(Finite Element Method,FEM)结果吻合良好。此外,用同样的方法分析不同孔尺寸对结构固有频率和响应的影响。研究发现,可通过改变加筋板的开孔形状、尺寸对结构的振动特性进行调整。研究成果可为混合弹性边界板结构动力分析提供一种新的技术途径,可以简化加筋开孔板结构动力分析的步骤。