To make the dynamic assembly reliability analysis more effective for complex machinery of multi-object multi-discipline(MOMD),distributed collaborative extremum response surface method(DCERSM)was proposed based on ext...To make the dynamic assembly reliability analysis more effective for complex machinery of multi-object multi-discipline(MOMD),distributed collaborative extremum response surface method(DCERSM)was proposed based on extremum response surface method(ERSM).Firstly,the basic theories of the ERSM and DCERSM were investigated,and the strengths of DCERSM were proved theoretically.Secondly,the mathematical model of the DCERSM was established based upon extremum response surface function(ERSF).Finally,this model was applied to the reliability analysis of blade-tip radial running clearance(BTRRC)of an aeroengine high pressure turbine(HPT)to verify its advantages.The results show that the DCERSM can not only reshape the possibility of the reliability analysis for the complex turbo machinery,but also greatly improve the computational speed,save the computational time and improve the computational efficiency while keeping the accuracy.Thus,the DCERSM is verified to be feasible and effective in the dynamic assembly reliability(DAR)analysis of complex machinery.Moreover,this method offers an useful insight for designing and optimizing the dynamic reliability of complex machinery.展开更多
A methodology for automatically generating risk scenarios is presented.Its main idea is to let the system model "express itself" through simulation.This is achieved by having the simulation model driven by an elabor...A methodology for automatically generating risk scenarios is presented.Its main idea is to let the system model "express itself" through simulation.This is achieved by having the simulation model driven by an elaborated simulation engine,which:(i) manipulates the generation of branch points,i.e.event occurrence times;(ii) employs a depth-first systematic exploration strategy to cover all possible branch paths at each branch point.In addition,a backtracking technique,as an extension,is implemented to recover some missed risk scenarios.A widely discussed dynamic reliability example(a holdup tank) is used to aid in the explanation of and to demonstrate the effectiveness of the proposed methodology.展开更多
This paper presents a methodology for automatically generating risk scenarios for dynamic reliability applications in which some dynamic characteristics(e.g.,the order,timing and magnitude of events,the value of relev...This paper presents a methodology for automatically generating risk scenarios for dynamic reliability applications in which some dynamic characteristics(e.g.,the order,timing and magnitude of events,the value of relevant process parameters and initial conditions) have a significant influence on the evolution of the system.The main idea of the methodology is:(i) making the system model "express itself" through simulation by having the model driven by an elaborated simulation engine;(ii) exploiting uniform design to pick out a small subset of representative design points from the space of relevant dynamic characteristics;(iii) for each selected design point,employing a depth-first systematic exploration strategy to cover all possible scenario branches at each branch point.A highly dynamic example adapted from the literature(a chemical batch reactor) is studied to test the effectiveness of the proposed methodology.展开更多
基金Project(51175017)supported by the National Natural Science Foundation of ChinaProject(YWF-12-RBYJ-008)supported by the Innovation Foundation of Beihang University for PhD Graduates,ChinaProject(20111102110011)supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘To make the dynamic assembly reliability analysis more effective for complex machinery of multi-object multi-discipline(MOMD),distributed collaborative extremum response surface method(DCERSM)was proposed based on extremum response surface method(ERSM).Firstly,the basic theories of the ERSM and DCERSM were investigated,and the strengths of DCERSM were proved theoretically.Secondly,the mathematical model of the DCERSM was established based upon extremum response surface function(ERSF).Finally,this model was applied to the reliability analysis of blade-tip radial running clearance(BTRRC)of an aeroengine high pressure turbine(HPT)to verify its advantages.The results show that the DCERSM can not only reshape the possibility of the reliability analysis for the complex turbo machinery,but also greatly improve the computational speed,save the computational time and improve the computational efficiency while keeping the accuracy.Thus,the DCERSM is verified to be feasible and effective in the dynamic assembly reliability(DAR)analysis of complex machinery.Moreover,this method offers an useful insight for designing and optimizing the dynamic reliability of complex machinery.
基金supported by the National Natural Science Foundation of China (70901004)the Fundamental Research Funds for the Central Universities (YWF-10-01-A12)
文摘A methodology for automatically generating risk scenarios is presented.Its main idea is to let the system model "express itself" through simulation.This is achieved by having the simulation model driven by an elaborated simulation engine,which:(i) manipulates the generation of branch points,i.e.event occurrence times;(ii) employs a depth-first systematic exploration strategy to cover all possible branch paths at each branch point.In addition,a backtracking technique,as an extension,is implemented to recover some missed risk scenarios.A widely discussed dynamic reliability example(a holdup tank) is used to aid in the explanation of and to demonstrate the effectiveness of the proposed methodology.
基金supported by the National Natural Science Foundation of China (70901004)the Fundamental Research Funds for the Central Universities (YWF-10-01-A12)
文摘This paper presents a methodology for automatically generating risk scenarios for dynamic reliability applications in which some dynamic characteristics(e.g.,the order,timing and magnitude of events,the value of relevant process parameters and initial conditions) have a significant influence on the evolution of the system.The main idea of the methodology is:(i) making the system model "express itself" through simulation by having the model driven by an elaborated simulation engine;(ii) exploiting uniform design to pick out a small subset of representative design points from the space of relevant dynamic characteristics;(iii) for each selected design point,employing a depth-first systematic exploration strategy to cover all possible scenario branches at each branch point.A highly dynamic example adapted from the literature(a chemical batch reactor) is studied to test the effectiveness of the proposed methodology.