期刊文献+
共找到71篇文章
< 1 2 4 >
每页显示 20 50 100
NEURAL NETWORK SMITH PREDICTIVE CONTROL FOR TELEROBOTS WITH TIME DELAY 被引量:3
1
作者 黄金泉 徐亮 Frank L Lewis 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第1期35-40,共6页
A neural network Smith predictive control strategy is proposed to deal with inpu t and feedback time delays in telerobot systems. The delay time is assumed to b e invariant and unknown. The proposed control structure... A neural network Smith predictive control strategy is proposed to deal with inpu t and feedback time delays in telerobot systems. The delay time is assumed to b e invariant and unknown. The proposed control structure consists of a slave syst em and a master controller. In the slave system, a recurrent neural network (RNN ) with on-line weight tuning algorithm is employed to approximate the dynamics of the time-delay-free nonlinear plant, which is used to linearize the slave s ystem. The master controller is a Smith predictor for the linearized slave syste m, which provides prediction and maintains the desirable tracking performance. S tability propriety is guaranteed based on the Lyapunov method. A simulation of a two-link robotic manipulator is provided to illustrate the effectiveness of th e proposed control strategy. 展开更多
关键词 TELEROBOT time delay s ystem neural networks Smith predictor
在线阅读 下载PDF
New results on global exponential stability of competitive neural networks with different time scales and time-varying delays 被引量:1
2
作者 崔宝同 陈君 楼旭阳 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第5期1670-1677,共8页
This paper studies the global exponential stability of competitive neural networks with different time scales and time-varying delays. By using the method of the proper Lyapunov functions and inequality technique, som... This paper studies the global exponential stability of competitive neural networks with different time scales and time-varying delays. By using the method of the proper Lyapunov functions and inequality technique, some sufficient conditions are presented for global exponential stability of delay competitive neural networks with different time scales. These conditions obtained have important leading significance in the designs and applications of global exponential stability for competitive neural networks. Finally, an example with its simulation is provided to demonstrate the usefulness of the proposed criteria. 展开更多
关键词 competitive neural network different time scale global exponential stability delay
在线阅读 下载PDF
Novel delay-dependent stability analysis of Takagi-Sugeno fuzzy uncertain neural networks with time varying delays 被引量:1
3
作者 M. Syed Ali 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第7期49-60,共12页
This paper presents the stability analysis for a class of neural networks with time varying delays that are represented by the Takagi^ugeno IT-S) model. The main results given here focus on the stability criteria usi... This paper presents the stability analysis for a class of neural networks with time varying delays that are represented by the Takagi^ugeno IT-S) model. The main results given here focus on the stability criteria using a new Lyapunov functional. New relaxed conditions and new linear matrix inequality-based designs are proposed that outperform the previous results found in the literature. Numerical examples are provided to show that the achieved conditions are less conservative than the existing ones in the literature. 展开更多
关键词 neutral neural networks linear matrix inequality Lyapunov stability time varying delays
在线阅读 下载PDF
Synchronization of stochastically hybrid coupled neural networks with coupling discrete and distributed time-varying delays
4
作者 唐漾 钟恢凰 方建安 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第11期4080-4090,共11页
A general model of linearly stochastically coupled identical connected neural networks with hybrid coupling is proposed, which is composed of constant coupling, coupling discrete time-varying delay and coupling distri... A general model of linearly stochastically coupled identical connected neural networks with hybrid coupling is proposed, which is composed of constant coupling, coupling discrete time-varying delay and coupling distributed timevarying delay. All the coupling terms are subjected to stochastic disturbances described in terms of Brownian motion, which reflects a more realistic dynamical behaviour of coupled systems in practice. Based on a simple adaptive feedback controller and stochastic stability theory, several sufficient criteria are presented to ensure the synchronization of linearly stochastically coupled complex networks with coupling mixed time-varying delays. Finally, numerical simulations illustrated by scale-free complex networks verify the effectiveness of the proposed controllers. 展开更多
关键词 stochastically hybrid coupling discrete and distributed time-varying delays complex dynamical networks chaotic neural networks
在线阅读 下载PDF
Design of passive filters for time-delay neural networks with quantized output
5
作者 Jing Han Zhi Zhang +1 位作者 Xuefeng Zhang Jianping Zhou 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第11期156-163,共8页
Passive filtering of neural networks with time-invariant delay and quantized output is considered.A criterion on the passivity of a filtering error system is proposed by means of the Lyapunov-Krasovskii functional and... Passive filtering of neural networks with time-invariant delay and quantized output is considered.A criterion on the passivity of a filtering error system is proposed by means of the Lyapunov-Krasovskii functional and the Bessel-Legendre inequality.Based on the criterion,a design approach for desired passive filters is developed in terms of the feasible solution of a set of linear matrix inequalities.Then,analyses and syntheses are extended to the time-variant delay situation using the reciprocally convex combination inequality.Finally,a numerical example with simulations is used to illustrate the applicability and reduced conservatism of the present passive filter design approaches. 展开更多
关键词 neural networks time delay QUANTIZATION FILTERING
在线阅读 下载PDF
More relaxed condition for dynamics of discrete time delayed Hopfield neural networks
6
作者 张强 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第1期125-128,共4页
The dynamics of discrete time delayed Hopfield neural networks is investigated. By using a difference inequality combining with the linear matrix inequality, a sufficient condition ensuring global exponential stabilit... The dynamics of discrete time delayed Hopfield neural networks is investigated. By using a difference inequality combining with the linear matrix inequality, a sufficient condition ensuring global exponential stability of the unique equilibrium point of the networks is found. The result obtained holds not only for constant delay but also for time-varying delays. 展开更多
关键词 discrete time delayed Hopfield neural networks difference inequality
在线阅读 下载PDF
Finite-time Mittag-Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
7
作者 Guan Wang Zhixia Ding +2 位作者 Sai Li Le Yang Rui Jiao 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第10期297-306,共10页
Without dividing the complex-valued systems into two real-valued ones, a class of fractional-order complex-valued memristive neural networks(FCVMNNs) with time delay is investigated. Firstly, based on the complex-valu... Without dividing the complex-valued systems into two real-valued ones, a class of fractional-order complex-valued memristive neural networks(FCVMNNs) with time delay is investigated. Firstly, based on the complex-valued sign function, a novel complex-valued feedback controller is devised to research such systems. Under the framework of Filippov solution, differential inclusion theory and Lyapunov stability theorem, the finite-time Mittag-Leffler synchronization(FTMLS) of FCVMNNs with time delay can be realized. Meanwhile, the upper bound of the synchronization settling time(SST) is less conservative than previous results. In addition, by adjusting controller parameters, the global asymptotic synchronization of FCVMNNs with time delay can also be realized, which improves and enrich some existing results. Lastly,some simulation examples are designed to verify the validity of conclusions. 展开更多
关键词 finite-time Mittag-Leffler synchronization fractional-order complex-valued memristive neural networks time delay
在线阅读 下载PDF
Global exponential stability of cellular neural networks with time delays
8
作者 刘坚 裴冀南 《Journal of Chongqing University》 CAS 2008年第2期137-140,共4页
By using the properties of nonnegative matrices and techniques of differential inequalities,some sufficient conditions for the global exponential stability of cellular neural networks with time delays were obtained.Th... By using the properties of nonnegative matrices and techniques of differential inequalities,some sufficient conditions for the global exponential stability of cellular neural networks with time delays were obtained.The criteria do not require such conditions as boundedness and differentiability of activation functions.The conditions of the theorem were verified. 展开更多
关键词 cellular neural network time delay global exponential stability spectral radius
在线阅读 下载PDF
Existence and Exponential Stability of Almost Periodic Solutions to General BAM Neural Networks with Leakage Delays on Time Scales
9
作者 DONG Yan-shou HAN Yan DAI Ting-ting 《Chinese Quarterly Journal of Mathematics》 2022年第2期189-202,共14页
In this paper, the existence of almost periodic solutions to general BAM neural networks with leakage delays on time scales is first studied, by using the exponential dichotomy method of linear differential equations ... In this paper, the existence of almost periodic solutions to general BAM neural networks with leakage delays on time scales is first studied, by using the exponential dichotomy method of linear differential equations and fixed point theorem. Then, the exponential stability of almost periodic solutions to such BAM neural networks on time scales is discussed by utilizing differential inequality. Finally, an example is given to support our results in this paper and the results are up-to-date. 展开更多
关键词 Almost periodic solution neural network time scale Leakage delay Existence and exponential stability
在线阅读 下载PDF
Event-based nonfragile state estimation for memristive recurrent neural networks with stochastic cyber-attacks and sensor saturations
10
作者 邵晓光 张捷 鲁延娟 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期126-135,共10页
This paper addresses the issue of nonfragile state estimation for memristive recurrent neural networks with proportional delay and sensor saturations. In practical engineering, numerous unnecessary signals are transmi... This paper addresses the issue of nonfragile state estimation for memristive recurrent neural networks with proportional delay and sensor saturations. In practical engineering, numerous unnecessary signals are transmitted to the estimator through the networks, which increases the burden of communication bandwidth. A dynamic event-triggered mechanism,instead of a static event-triggered mechanism, is employed to select useful data. By constructing a meaningful Lyapunov–Krasovskii functional, a delay-dependent criterion is derived in terms of linear matrix inequalities for ensuring the global asymptotic stability of the augmented system. In the end, two numerical simulations are employed to illustrate the feasibility and validity of the proposed theoretical results. 展开更多
关键词 memristor-based neural networks proportional delays dynamic event-triggered mechanism sensor saturations
在线阅读 下载PDF
Multiple Lagrange stability and Lyapunov asymptotical stability of delayed fractional-order Cohen-Grossberg neural networks
11
作者 Yu-Jiao Huang Xiao-Yan Yuan +2 位作者 Xu-Hua Yang Hai-Xia Long Jie Xiao 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第2期196-205,共10页
This paper addresses the coexistence and local stability of multiple equilibrium points for fractional-order Cohen-Grossberg neural networks(FOCGNNs)with time delays.Based on Brouwer's fixed point theorem,sufficie... This paper addresses the coexistence and local stability of multiple equilibrium points for fractional-order Cohen-Grossberg neural networks(FOCGNNs)with time delays.Based on Brouwer's fixed point theorem,sufficient conditions are established to ensure the existence of Πi=1^n(2Ki+1)equilibrium points for FOCGNNs.Through the use of Hardy inequality,fractional Halanay inequality,and Lyapunov theory,some criteria are established to ensure the local Lagrange stability and the local Lyapunov asymptotical stability of Πi=1^n(Ki+1)equilibrium points for FOCGNNs.The obtained results encompass those of integer-order Hopfield neural networks with or without delay as special cases.The activation functions are nonlinear and nonmonotonic.There could be many corner points in this general class of activation functions.The structure of activation functions makes FOCGNNs could have a lot of stable equilibrium points.Coexistence of multiple stable equilibrium points is necessary when neural networks come to pattern recognition and associative memories.Finally,two numerical examples are provided to illustrate the effectiveness of the obtained results. 展开更多
关键词 FRACTIONAL-ORDER COHEN-GROSSBERG neural networks MULTIPLE LAGRANGE STABILITY MULTIPLE LYAPUNOV asymptotical STABILITY time delays
在线阅读 下载PDF
Novel criteria for global exponential stability and periodic solutions of delayed Hopfield neural networks
12
作者 高潮 《Journal of Chongqing University》 CAS 2003年第1期73-77,共5页
The global exponentially stability and the existence of periodic solutions of a class of Hopfield neural networks with time delays are investigated. By constructing a novel Lyapunov function, new criteria are provided... The global exponentially stability and the existence of periodic solutions of a class of Hopfield neural networks with time delays are investigated. By constructing a novel Lyapunov function, new criteria are provided to guarantee the global exponentially stability of such systems. For the delayed Hopfield neural networks with time-varying external inputs, new criteria are also acquired for the existence and exponentially stability of periodic solutions. The results are generalizations and improvements of some recent achievements reported in the literature on networks with time delays. 展开更多
关键词 Hopfield neural network time delay global exponentially stability periodic solution
在线阅读 下载PDF
基于改进傅里叶神经网络的多关节机器人实时负载辨识方法
13
作者 岳夏 李志滨 +3 位作者 张春良 王亚东 王宇华 龙尚斌 《振动与冲击》 北大核心 2025年第5期314-322,共9页
关节式机器人应用于各类生产环节,对负载进行实时监测是确保机器人安全运行的前提。但在某些特殊场景下无法直接测量负载,通常使用动力学方法间接求解,由于其非线性特性明显且模型参数的不确定性,负载识别的精度与效率一直不高。因此该... 关节式机器人应用于各类生产环节,对负载进行实时监测是确保机器人安全运行的前提。但在某些特殊场景下无法直接测量负载,通常使用动力学方法间接求解,由于其非线性特性明显且模型参数的不确定性,负载识别的精度与效率一直不高。因此该研究基于傅里叶神经网络提出了一种改进模型来实现负载辨识,以提高系统负载参数的预测精度与时效性。所提方法利用傅里叶神经网络中的卷积与频域截断机制快速获取特征信号,与前馈神经网络的输出结果进行数据融合得到辨识结果。所提方法相比动力学模型求解方法精度更高、计算速度更快,仅需学习预测范围内几个相间的样本集,就可识别预测范围内的任意结果,泛化能力好。同时进行网络敏感参数的分析,并与成熟神经网络算法进行性能比较。该方法将两种神经网络模型进行协同配合,能有效识别高维数据中的不同特征集,从而实现参数辨识,为复杂非线性系统的参数识别提供参考。 展开更多
关键词 工业机器人 傅里叶神经网络 动力学 实时 负载识别
在线阅读 下载PDF
基于有限时间指令滤波反步法的船舶动力定位自适应控制
14
作者 陈兴华 韩旭 +2 位作者 刘彩云 夏国清 李娟 《船舶力学》 北大核心 2025年第4期547-559,共13页
本文研究船舶动力定位(DP)系统中存在的推进器动态特性、模型参数不确定、推进器输入饱和及外部扰动未知等问题,提出一种基于有限时间指令滤波反步法的鲁棒自适应动力定位控制方法,该方法不仅具有滤波反步法的优点还能保证控制系统在有... 本文研究船舶动力定位(DP)系统中存在的推进器动态特性、模型参数不确定、推进器输入饱和及外部扰动未知等问题,提出一种基于有限时间指令滤波反步法的鲁棒自适应动力定位控制方法,该方法不仅具有滤波反步法的优点还能保证控制系统在有限时间内收敛。首先,采用神经网络技术对系统中的非线性项进行逼近;其次,设计有限时间辅助动态系统(FTADS)解决推进器输入饱和问题;最后,结合设计的神经网络估计值和FTADS,采用有限时间指令滤波反步法对控制器进行设计,利用Lyapunov稳定性理论证明系统跟踪误差和参数估计误差是有限时间收敛的。并对所提控制方法进行仿真实验,仿真结果表明所提出的控制器是有效性的。 展开更多
关键词 动力定位系统 推进器动态特性 神经网络估计器 有限时间指令滤波反步法 有限时间收敛
在线阅读 下载PDF
考虑未知时变流速的AUV改进动态面自适应跟踪控制
15
作者 李亚龙 王俊雄 《装备环境工程》 2025年第1期144-151,共8页
目的提高水下机器人在未知时变海流速度、不确定性建模和环境干扰3种未知因素影响下的跟踪控制性能。方法基于改进动态面自适应控制方法,首先为补偿三种未知因素的影响,设计海流速度自适应更新律和径向基神经网络,对其进行实时估计,同... 目的提高水下机器人在未知时变海流速度、不确定性建模和环境干扰3种未知因素影响下的跟踪控制性能。方法基于改进动态面自适应控制方法,首先为补偿三种未知因素的影响,设计海流速度自适应更新律和径向基神经网络,对其进行实时估计,同时将传统的固定滤波器改进为一种时变滤波器,以改善控制输入抖振问题。然后构建Lyapunov函数证明稳定性。最后进行仿真实验,并与传统动态面控制法和反步滑模控制法作对比。结果本文设计的海流速度自适应更新律和径向基神经网络能够精确估计3种未知因素的影响,展现了强大的鲁棒性。此外,相比于2种对比方法,本文方法在控制精度、解决抖振能力方面展现了优越的控制性能。结论基于改进动态面自适应控制方法,在考虑不确定性建模和环境干扰的基础上,解决了现实情况中存在的未知时变海流速度干扰问题,同时提高了水下机器人在复杂环境中的控制性能。 展开更多
关键词 水下机器人 动态面控制 未知时变海流速度 自适应控制 轨迹跟踪 径向基神经网络
在线阅读 下载PDF
用于多元时间序列预测的图神经网络模型
16
作者 张晗 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第12期2500-2509,共10页
现有用于多元时序预测的图神经网络模型大多基于预定义图以静态的方式捕捉时序特征,缺少对于系统动态适应和对时序样本之间潜在动态关系的捕捉.提出用于多元时序预测的图神经网络模型(MTSGNN).该模型在一个图学习模块中,采用数据驱动的... 现有用于多元时序预测的图神经网络模型大多基于预定义图以静态的方式捕捉时序特征,缺少对于系统动态适应和对时序样本之间潜在动态关系的捕捉.提出用于多元时序预测的图神经网络模型(MTSGNN).该模型在一个图学习模块中,采用数据驱动的方式学习时间序列数据的静态图和动态演化图,以捕捉时序样本之间的复杂关系.通过图交互模块实现静态图和动态图之间的信息交互,并使用卷积运算提取交互信息中的依赖关系.利用多层感知机对多元时序进行预测.实验结果表明,所提模型在6个真实的多元时间序列数据集上的预测效果显著优于当前最先进的方法,并且具有参数量较小、运算速度较快的优点. 展开更多
关键词 多元时间序列 图神经网络 静态图 动态图 图交互
在线阅读 下载PDF
基于改进MobileV3Net的脉冲雷达干扰识别方法
17
作者 郭立民 鄂璟仪 黄文青 《舰船电子对抗》 2024年第4期1-7,共7页
随着现代电子战的飞速发展,基于数字射频存储器转发的新型干扰层出不穷,如何快速有效地识别这类干扰成为现今研究的热点问题。针对于此,提出了一种基于改进MobileV3Net的脉冲雷达干扰识别研究,使用MobileV3Net作为基本网络框架,添加了... 随着现代电子战的飞速发展,基于数字射频存储器转发的新型干扰层出不穷,如何快速有效地识别这类干扰成为现今研究的热点问题。针对于此,提出了一种基于改进MobileV3Net的脉冲雷达干扰识别研究,使用MobileV3Net作为基本网络框架,添加了动态卷积模块和高效通道注意力模块,实现了自动提取特征的小样本下8类干扰的有效识别。仿真结果表明,该网络的训练时间大大减少,且在轻量训练样本下依然能保持95%以上的识别准确率,在-10~10 dB下,平均识别率在99%以上,证明该方法具有更强的鲁棒性,更高的准确度,更好的轻量性。 展开更多
关键词 雷达有源干扰 时频域分析 卷积神经网络 动态卷积
在线阅读 下载PDF
沥青混合料动态模量预测模型研究 被引量:1
18
作者 冀立新 王立军 +1 位作者 赵强 张峥玮 《武汉理工大学学报(交通科学与工程版)》 2024年第4期725-731,共7页
通过室内试验,并结合时温等效原理,预测更大频率(温度)范围的动态模量值.室内试验中,利用动态剪切流变仪(DSR)对90#基质沥青、SBS改性沥青以及EVA改性沥青进行频率扫描试验,得到不同温度和频率下的动态剪切模量值|G\+|.对这三种沥青的... 通过室内试验,并结合时温等效原理,预测更大频率(温度)范围的动态模量值.室内试验中,利用动态剪切流变仪(DSR)对90#基质沥青、SBS改性沥青以及EVA改性沥青进行频率扫描试验,得到不同温度和频率下的动态剪切模量值|G\+|.对这三种沥青的不同级配的沥青混合料进行动态模量试验得到|E\+|,并结合Williams-Landel-Ferry(WLF)方程与Sigmoid函数得到其动态模量主曲线.基于试验数据评价Hirsch模型、人工神经网络模型的预测能力,发现Hirsch模型预测能力较低,并对其做出优化,结果表明:修正后的Hirsch模型预测能力进一步提升.相比经验模型,人工神经网络模型的预测精度较高. 展开更多
关键词 沥青混合料 动态模量 时温等效原理 Hirsch模型 人工神经网络
在线阅读 下载PDF
冰雪天气下基于LSTM的跑道温度数据-机理联合预测 被引量:1
19
作者 陈斌 刘悦 +1 位作者 尹开浪 方珣 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第7期2184-2194,共11页
温度是跑道结冰的重要因素,针对跑道除冰运行的跑道热特性参数瞬态变化问题和温度周期序列缓慢变化特性,建立冰雪天气下基于长短时记忆(LSTM)的跑道温度数据-机理联合预测模型。通过最大信息系数法选择数据模型的输入特征变量,采用动态... 温度是跑道结冰的重要因素,针对跑道除冰运行的跑道热特性参数瞬态变化问题和温度周期序列缓慢变化特性,建立冰雪天气下基于长短时记忆(LSTM)的跑道温度数据-机理联合预测模型。通过最大信息系数法选择数据模型的输入特征变量,采用动态时间弯曲法进行跑道温度数据聚类划分,建立基于LSTM的数据预测模型;通过跑道热力学知识获取跑道温度预测机理模型,采用最小误差赋权法建立跑道温度数据-机理联合预测模型。仿真预测显示,预测时长为20 min、残差阈值为±0.5℃时,数据-机理联合预测模型优于单独的数据预测模型和机理模型,预测准确率可达99.34%;横向对比显示,在相同边界条件下,数据-机理联合预测模型优于BP神经网络、多元回归模型和支持向量机模型,平均准确率提高26.11%。研究表明,基于LSTM的跑道温度数据-机理联合预测模型契合冰雪天气下跑道除冰运行实际,可获得较好的跑道温度短时预测结果。 展开更多
关键词 跑道温度 冰雪天气 预测 长短时记忆神经网络 动态时间弯曲
在线阅读 下载PDF
一种基于深度学习的时序病变数据段分类方法
20
作者 袁傲 齐金鹏 +2 位作者 贾灿 薛宇鑫 郭阳阳 《电子科技》 2024年第6期84-91,共8页
针对在大规模时序医疗数据的分析中现有检测方法检测精度低、检测速度慢等问题,文中提出了一种基于深度学习的时序病变数据段分类方法。该方法在TSTKS(Ternary Search Trees and modified Kolmogorov-Smirnov)算法和滑动窗口理论的基础... 针对在大规模时序医疗数据的分析中现有检测方法检测精度低、检测速度慢等问题,文中提出了一种基于深度学习的时序病变数据段分类方法。该方法在TSTKS(Ternary Search Trees and modified Kolmogorov-Smirnov)算法和滑动窗口理论的基础上,利用深度学习技术实现了对病变数据段的快速准确分类。文中以利用该方法对病变数据段进行分类的结果作为依据,实现了滑动窗口大小的动态调整。通过对真实癫痫脑电信号(Electroencephalogram,EEG)进行分析,证明了所提病变数据段分类方法和基于该分类方法的滑动窗口动态调整机制具有检测速度快、精度较高等优点,可以为大规模时序数据的快速分析研究提供一种新选择。 展开更多
关键词 大数据分析 时序数据 动态滑动窗口 多突变点检测 深度学习 癫痫脑电信号 BP神经网络 TSTKS算法
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部