The successful application of perimeter control of urban traffic system strongly depends on the macroscopic fundamental diagram of the targeted region.Despite intensive studies on the partitioning of urban road networ...The successful application of perimeter control of urban traffic system strongly depends on the macroscopic fundamental diagram of the targeted region.Despite intensive studies on the partitioning of urban road networks,the dynamic partitioning of urban regions reflecting the propagation of congestion remains an open question.This paper proposes to partition the network into homogeneous sub-regions based on random walk algorithm.Starting from selected random walkers,the road network is partitioned from the early morning when congestion emerges.A modified Akaike information criterion is defined to find the optimal number of partitions.Region boundary adjustment algorithms are adopted to optimize the partitioning results to further ensure the correlation of partitions.The traffic data of Melbourne city are used to verify the effectiveness of the proposed partitioning method.展开更多
Identifying critical nodes or sets in large-scale networks is a fundamental scientific problem and one of the key research directions in the fields of data mining and network science when implementing network attacks,...Identifying critical nodes or sets in large-scale networks is a fundamental scientific problem and one of the key research directions in the fields of data mining and network science when implementing network attacks, defense, repair and control.Traditional methods usually begin from the centrality, node location or the impact on the largest connected component after node destruction, mainly based on the network structure.However, these algorithms do not consider network state changes.We applied a model that combines a random connectivity matrix and minimal low-dimensional structures to represent network connectivity.By using mean field theory and information entropy to calculate node activity,we calculated the overlap between the random parts and fixed low-dimensional parts to quantify the influence of node impact on network state changes and ranked them by importance.We applied this algorithm and the proposed importance algorithm to the overall analysis and stratified analysis of the C.elegans neural network.We observed a change in the critical entropy of the network state and by utilizing the proposed method we can calculate the nodes that indirectly affect muscle cells through neural layers.展开更多
In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation ...In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method.展开更多
We construct a dual-layer coupled complex network of communities and residents to represent the interconnected risk transmission network between communities and the disease transmission network among residents. It cha...We construct a dual-layer coupled complex network of communities and residents to represent the interconnected risk transmission network between communities and the disease transmission network among residents. It characterizes the process of infectious disease transmission among residents between communities through the SE2IHR model considering two types of infectors. By depicting a more fine-grained social structure and combining further simulation experiments, the study validates the crucial role of various prevention and control measures implemented by communities as primary executors in controlling the epidemic. Research shows that the geographical boundaries of communities and the social interaction patterns of residents have a significant impact on the spread of the epidemic, where early detection, isolation and treatment strategies at community level are essential for controlling the spread of the epidemic. In addition, the study explores the collaborative governance model and institutional advantages of communities and residents in epidemic prevention and control.展开更多
The analysis of interwell connectivity plays an important role in the formulation of oilfield development plans and the description of residual oil distribution. In fact, sandstone reservoirs in China's onshore oi...The analysis of interwell connectivity plays an important role in the formulation of oilfield development plans and the description of residual oil distribution. In fact, sandstone reservoirs in China's onshore oilfields generally have the characteristics of thin and many layers, so multi-layer joint production is usually adopted. It remains a challenge to ensure the accuracy of splitting and dynamic connectivity in each layer of the injection-production wells with limited field data. The three-dimensional well pattern of multi-layer reservoir and the relationship between injection-production wells can be equivalent to a directional heterogeneous graph. In this paper, an improved graph neural network is proposed to construct an interacting process mimics the real interwell flow regularity. In detail, this method is used to split injection and production rates by combining permeability, porosity and effective thickness, and to invert the dynamic connectivity in each layer of the injection-production wells by attention mechanism.Based on the material balance and physical information, the overall connectivity from the injection wells,through the water injection layers to the production layers and the output of final production wells is established. Meanwhile, the change of well pattern caused by perforation, plugging and switching of wells at different times is achieved by updated graph structure in spatial and temporal ways. The effectiveness of the method is verified by a combination of reservoir numerical simulation examples and field example. The method corresponds to the actual situation of the reservoir, has wide adaptability and low cost, has good practical value, and provides a reference for adjusting the injection-production relationship of the reservoir and the development of the remaining oil.展开更多
This paper investigates the problem of the model validation in identifying discrete-time-nonlinear dynamic systems by using neural networks with a single hidden layer.Based on the estimation theory,a synthetic error-i...This paper investigates the problem of the model validation in identifying discrete-time-nonlinear dynamic systems by using neural networks with a single hidden layer.Based on the estimation theory,a synthetic error-index(SEI)criterion for the neural network models has been developed.By using the powerful training algorithm of recursive prediction error (RPE),two simulated non-linear systems are studied,and the results show that the synthetic error-index criterion can be used to verify the dynamic neural network models.Furthermore,the proposed technique is much simple in calculation than that of the effective correlation tests.Finally,some problems required by further study are discussed.展开更多
The human brain is highly plastic.Cognitive training is usually used to modify functional connectivity of brain networks.Moreover,the structures of brain networks may determine its dynamic behavior which is related to...The human brain is highly plastic.Cognitive training is usually used to modify functional connectivity of brain networks.Moreover,the structures of brain networks may determine its dynamic behavior which is related to human cognitive abilities.To study the effect of functional connectivity on the brain dynamics,the dynamic model based on functional connections of the brain and the Hindmarsh–Rose model is utilized in this work.The resting-state fMRI data from the experimental group undergoing abacus-based mental calculation(AMC)training and from the control group are used to construct the functional brain networks.The dynamic behavior of brain at the resting and task states for the AMC group and the control group are simulated with the above-mentioned dynamic model.In the resting state,there are the differences of brain activation between the AMC group and the control group,and more brain regions are inspired in the AMC group.A stimulus with sinusoidal signals to brain networks is introduced to simulate the brain dynamics in the task states.The dynamic characteristics are extracted by the excitation rates,the response intensities and the state distributions.The change in the functional connectivity of brain networks with the AMC training would in turn improve the brain response to external stimulus,and make the brain more efficient in processing tasks.展开更多
Dynamic spectrum access(DSA) based on cognitive radios(CR) technique is an effective approach to address the "spectrum scarcity" issue. However, traditional CR-enabled DSA system employs only single DSA stra...Dynamic spectrum access(DSA) based on cognitive radios(CR) technique is an effective approach to address the "spectrum scarcity" issue. However, traditional CR-enabled DSA system employs only single DSA strategy, which might not be suited to the dynamic network environment. In this paper, we propose a multi-strategy DSA(MS-DSA) system, where the primary and the secondary system share spectrum resources with multiple DSA strategies simultaneously. To analyze the performance of the proposed MS-DSA system, we model it as a continuous-time Markov chain(CTMC) and derive the expressions to compute the corresponding performance metrics. Based on this, we define a utility function involving the concerns of effective throughput, interference quantity on primary users, and spectrum leasing cost. Two optimization schemes, named as spectrum allocation and false alarm probability selection, are proposed to maximize the utility function. Finally, numerical simulations are provided to validate our analysis and demonstrate that the performance can be significantly improved caused by virtues of the proposed MS-DSA system.展开更多
In this paper, a dynamic epidemic control model on the uncorrelated complex networks is proposed. By means of theoretical analysis, we found that the new model has a similar epidemic threshold as that of the susceptib...In this paper, a dynamic epidemic control model on the uncorrelated complex networks is proposed. By means of theoretical analysis, we found that the new model has a similar epidemic threshold as that of the susceptible-infectedrecovered (SIR) model on the above networks, but it can reduce the prevalence of the infected individuals remarkably. This result may help us understand epidemic spreading phenomena on real networks and design appropriate strategies to control infections.展开更多
A problem of topology identification for complex dynamical networks is investigated in this paper. An adaptive observer is proposed to identify the topology of a complex dynamical networks based on the Lyapunov stabil...A problem of topology identification for complex dynamical networks is investigated in this paper. An adaptive observer is proposed to identify the topology of a complex dynamical networks based on the Lyapunov stability theory. Here the output of the network and the states of the observer are used to construct the updating law of the topology such that the communication resources from the network to its observer are saved. Some convergent criteria of the adaptive observer are derived in the form of linear inequality matrices. Several numerical examples are shown to demonstrate the effectiveness of the proposed observer.展开更多
A dynamic protocol stack(DPS) for ad hoc networks, together with a protocol stack construction scheme that is modeled as a multiconstrained knapsack problem is proposed. Compared to the traditional static protocol sta...A dynamic protocol stack(DPS) for ad hoc networks, together with a protocol stack construction scheme that is modeled as a multiconstrained knapsack problem is proposed. Compared to the traditional static protocol stack, DPS operates in a dynamic and adaptive manner and is scalable to network condition changes. In addition, a protocol construction algorithm is proposed to dynamically construct of the protocol stack each network node. Simulation results show that, the processing and forwarding performance of our scheme is close to 1 Gb/s, and the performance of our algorithm is close to that of the classical algorithms with much lower complexity.展开更多
In this paper, based on the invaxiance principle of differential equations, we propose a simple adaptive control method to synchronize the network with coupling of the general form. Comparing with other control approa...In this paper, based on the invaxiance principle of differential equations, we propose a simple adaptive control method to synchronize the network with coupling of the general form. Comparing with other control approaches, this scheme only depends on each node's state output. So we need not to know the concrete network structure and the solutions of the isolate nodes of the network in advance. In order to demonstrate the effectiveness of the method, a special example is provided and numerical simulations are performed. The numerical results show that our control scheme is very effective and robust against the weak noise.展开更多
In this paper, successive lag synchronization (SLS) on a dynamical network with communication delay is investigated. In order to achieve SLS on the dynamical network with communication delay, we design linear feedba...In this paper, successive lag synchronization (SLS) on a dynamical network with communication delay is investigated. In order to achieve SLS on the dynamical network with communication delay, we design linear feedback control and adaptive control, respectively. By using the Lyapunov function method, we obtain some sufficient conditions for global stability of SLS. To verify these results, some numerical examples are further presented. This work may find potential applications in consensus of multi-agent systems.展开更多
In this article, a synchronization problem for master-slave Markovian switching complex dynamical networks with time-varying delays in nonlinear function via sliding mode control is investigated. On the basis of the a...In this article, a synchronization problem for master-slave Markovian switching complex dynamical networks with time-varying delays in nonlinear function via sliding mode control is investigated. On the basis of the appropriate Lyapunov-Krasovskii functional, introducing some free weighting matrices, new synchronization criteria are derived in terms of linear matrix inequalities (LMIs). Then, an integral sliding surface is designed to guarantee synchronization of master-slave Markovian switching complex dynamical networks, and the suitable controller is synthesized to ensure that the trajectory of the closed-loop error system can be driven onto the prescribed sliding mode surface. By using Dynkin's formula, we established the stochastic stablity of master-slave system. Finally, numerical example is provided to demonstrate the effectiveness of the obtained theoretical results.展开更多
This paper concerns the disturbance rejection problem of a linear complex dynamical network subject to external disturbances. A dynamical network is said to be robust to disturbance, if the H∞ norm of its transfer fu...This paper concerns the disturbance rejection problem of a linear complex dynamical network subject to external disturbances. A dynamical network is said to be robust to disturbance, if the H∞ norm of its transfer function matrix from the disturbance to the performance variable is satisfactorily small. It is shown that the disturbance rejection problem of a dynamical network can be solved by analysing the H∞ control problem of a set of independent systems whose dimensions are equal to that of a single node. A counter-intuitive result is that the disturbance rejection level of the whole network with a diffusive coupling will never be better than that of an isolated node. To improve this, local feedback injections are applied to a small fraction of the nodes in the network. Some criteria for possible performance improvement are derived in terms of linear matrix inequalities. It is further demonstrated via a simulation example that one can indeed improve the disturbance rejection level of the network by pinning the nodes with higher degrees than pinning those with lower degrees.展开更多
This paper proposes a novel approach for fault diagnosis of a time-delay complex dynamical network. Unlike the other methods, assuming that the dynamics of the network can be described by a linear stochastic model, or...This paper proposes a novel approach for fault diagnosis of a time-delay complex dynamical network. Unlike the other methods, assuming that the dynamics of the network can be described by a linear stochastic model, or using the state variables of nodes in the network to design an adaptive observer, it only uses the output variable of the nodes to design an observer and an adaptive law of topology matrix in the observer of a complex network, leading to simple design of the observer and easy realisation of topology monitoring for the complex networks in real engineering. The proposed scheme can monitor any changes of the topology structure of a time-delay complex network. The effectiveness of this method is successfully demonstrated by virtue of a complex networks with Lorenz model.展开更多
The architecture of cislunar multi-hop communication networks, which focuses on the requirements of lunar full-coverage and continuous cislunar communications, is presented on the basis of Geosynchronous Orbit (GEO) s...The architecture of cislunar multi-hop communication networks, which focuses on the requirements of lunar full-coverage and continuous cislunar communications, is presented on the basis of Geosynchronous Orbit (GEO) satellite network relays. According to the geographical distribution of the forthcoming Chinese Deep Space Measuring and Controlling Network (DSMCN), two networking schemes are proposed and two elevation angle optimization models are established for locating GEO relay satellites. To analyze the dynamic connectivity, a dynamic network model is constructed with respect to the time-varying characteristics of cislunar trunk links. The advantages of the two proposed schemes, in terms of the Connectivity Rate (CR), Interruption Frequency (IF), and Average Length of Connecting Duration (ALCD), are corroborated by several simulations. In the case of the lunar polar orbit constellation case, the gains in the performance of scheme I are observed to be 134.55%, 117.03%, and 217.47% compared with DSMCN for three evaluation indicators, and the gains in the performance of scheme II are observed to be 238. 22%, 240.40%, and 572.71%. The results validate that the connectivity of GEO satellites outperforms that of earth facilities significantly and schemes based on GEO satellite relays are promising options for cislunar multi-hop communication networking.展开更多
This paper studies the stochastic synchronization problem for time-varying complex dynamical networks. This model is totally different from some existing network models. Based on the Lyapunov stability theory, inequal...This paper studies the stochastic synchronization problem for time-varying complex dynamical networks. This model is totally different from some existing network models. Based on the Lyapunov stability theory, inequality techniques, and the properties of the Weiner process, some controllers and adaptive laws are designed to ensure achieving stochastic synchronization of a complex dynamical network model. A sufficient synchronization condition is given to ensure that the proposed network model is mean-square stable. Theoretical analysis and numerical simulation fully verify the main results.展开更多
With the explosive growth of highspeed wireless data demand and the number of mobile devices, fog radio access networks(F-RAN) with multi-layer network structure becomes a hot topic in recent research. Meanwhile, due ...With the explosive growth of highspeed wireless data demand and the number of mobile devices, fog radio access networks(F-RAN) with multi-layer network structure becomes a hot topic in recent research. Meanwhile, due to the rapid growth of mobile communication traffic, high cost and the scarcity of wireless resources, it is especially important to develop an efficient radio resource management mechanism. In this paper, we focus on the shortcomings of resource waste, and we consider the actual situation of base station dynamic coverage and user requirements. We propose a spectrum pricing and allocation scheme based on Stackelberg game model under F-RAN framework, realizing the allocation of resource on demand. This scheme studies the double game between the users and the operators, as well as between the traditional operators and the virtual operators, maximizing the profits of the operators. At the same time, spectrum reuse technology is adopted to improve the utilization of network resource. By analyzing the simulation results, it is verified that our proposed scheme can not only avoid resource waste, but also effectively improve the operator's revenue efficiency and overall network resource utilization.展开更多
Motivated by the objective of pursuing revenue, improvement in coverage and reduction in energy cost for wireless communication networks have been of great significance for mobile operators. Therefore, heterogeneous c...Motivated by the objective of pursuing revenue, improvement in coverage and reduction in energy cost for wireless communication networks have been of great significance for mobile operators. Therefore, heterogeneous cellular networks(HCNs) and Coordinated Multipoint(Co MP) transmission are considered as promising solutions to enhance the performances of wireless communication systems. This paper analyzed the K-tier HCNs with a dynamic downlink Co MP scheme, in which the flexible clusters of cooperative stations are determined by a connecting threshold θ. Using stochastic geometry, the coverage probability(CP) and energy efficiency(EE) of a K-tier HCN operating under this scheme are derived, based on which the trade-off between CP and EE is discovered and discussed. Simulation results show the validity of our derivations. The proposed schememay significantly reduce energy consumption sacrificing a small amount of CP, and outperforms the fixed scheme as well. The CP-EE trade-off are also revealed, whichsuggests suitable trade-off points between CP and EE that will deliver the maximum economic profitability. Tendencies discovered in this paper may provide the operators with opportunities for further optimization in pursuit of economic profitability.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.12072340)the Chinese Scholarship Council and the Australia Research Council through a linkage project fund。
文摘The successful application of perimeter control of urban traffic system strongly depends on the macroscopic fundamental diagram of the targeted region.Despite intensive studies on the partitioning of urban road networks,the dynamic partitioning of urban regions reflecting the propagation of congestion remains an open question.This paper proposes to partition the network into homogeneous sub-regions based on random walk algorithm.Starting from selected random walkers,the road network is partitioned from the early morning when congestion emerges.A modified Akaike information criterion is defined to find the optimal number of partitions.Region boundary adjustment algorithms are adopted to optimize the partitioning results to further ensure the correlation of partitions.The traffic data of Melbourne city are used to verify the effectiveness of the proposed partitioning method.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.72071153 and 72231008)Laboratory of Science and Technology on Integrated Logistics Support Foundation (Grant No.6142003190102)the Natural Science Foundation of Shannxi Province (Grant No.2020JM486)。
文摘Identifying critical nodes or sets in large-scale networks is a fundamental scientific problem and one of the key research directions in the fields of data mining and network science when implementing network attacks, defense, repair and control.Traditional methods usually begin from the centrality, node location or the impact on the largest connected component after node destruction, mainly based on the network structure.However, these algorithms do not consider network state changes.We applied a model that combines a random connectivity matrix and minimal low-dimensional structures to represent network connectivity.By using mean field theory and information entropy to calculate node activity,we calculated the overlap between the random parts and fixed low-dimensional parts to quantify the influence of node impact on network state changes and ranked them by importance.We applied this algorithm and the proposed importance algorithm to the overall analysis and stratified analysis of the C.elegans neural network.We observed a change in the critical entropy of the network state and by utilizing the proposed method we can calculate the nodes that indirectly affect muscle cells through neural layers.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62373197 and 61873326)。
文摘In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method.
基金Project supported by the Ministry of Education of China in the later stage of philosophy and social science research(Grant No.19JHG091)the National Natural Science Foundation of China(Grant No.72061003)+1 种基金the Major Program of National Social Science Fund of China(Grant No.20&ZD155)the Guizhou Provincial Science and Technology Projects(Grant No.[2020]4Y172)。
文摘We construct a dual-layer coupled complex network of communities and residents to represent the interconnected risk transmission network between communities and the disease transmission network among residents. It characterizes the process of infectious disease transmission among residents between communities through the SE2IHR model considering two types of infectors. By depicting a more fine-grained social structure and combining further simulation experiments, the study validates the crucial role of various prevention and control measures implemented by communities as primary executors in controlling the epidemic. Research shows that the geographical boundaries of communities and the social interaction patterns of residents have a significant impact on the spread of the epidemic, where early detection, isolation and treatment strategies at community level are essential for controlling the spread of the epidemic. In addition, the study explores the collaborative governance model and institutional advantages of communities and residents in epidemic prevention and control.
基金the support of the National Nature Science Foundation of China(No.52074336)Emerging Big Data Projects of Sinopec Corporation(No.20210918084304712)。
文摘The analysis of interwell connectivity plays an important role in the formulation of oilfield development plans and the description of residual oil distribution. In fact, sandstone reservoirs in China's onshore oilfields generally have the characteristics of thin and many layers, so multi-layer joint production is usually adopted. It remains a challenge to ensure the accuracy of splitting and dynamic connectivity in each layer of the injection-production wells with limited field data. The three-dimensional well pattern of multi-layer reservoir and the relationship between injection-production wells can be equivalent to a directional heterogeneous graph. In this paper, an improved graph neural network is proposed to construct an interacting process mimics the real interwell flow regularity. In detail, this method is used to split injection and production rates by combining permeability, porosity and effective thickness, and to invert the dynamic connectivity in each layer of the injection-production wells by attention mechanism.Based on the material balance and physical information, the overall connectivity from the injection wells,through the water injection layers to the production layers and the output of final production wells is established. Meanwhile, the change of well pattern caused by perforation, plugging and switching of wells at different times is achieved by updated graph structure in spatial and temporal ways. The effectiveness of the method is verified by a combination of reservoir numerical simulation examples and field example. The method corresponds to the actual situation of the reservoir, has wide adaptability and low cost, has good practical value, and provides a reference for adjusting the injection-production relationship of the reservoir and the development of the remaining oil.
文摘This paper investigates the problem of the model validation in identifying discrete-time-nonlinear dynamic systems by using neural networks with a single hidden layer.Based on the estimation theory,a synthetic error-index(SEI)criterion for the neural network models has been developed.By using the powerful training algorithm of recursive prediction error (RPE),two simulated non-linear systems are studied,and the results show that the synthetic error-index criterion can be used to verify the dynamic neural network models.Furthermore,the proposed technique is much simple in calculation than that of the effective correlation tests.Finally,some problems required by further study are discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62276229 and 32071096).
文摘The human brain is highly plastic.Cognitive training is usually used to modify functional connectivity of brain networks.Moreover,the structures of brain networks may determine its dynamic behavior which is related to human cognitive abilities.To study the effect of functional connectivity on the brain dynamics,the dynamic model based on functional connections of the brain and the Hindmarsh–Rose model is utilized in this work.The resting-state fMRI data from the experimental group undergoing abacus-based mental calculation(AMC)training and from the control group are used to construct the functional brain networks.The dynamic behavior of brain at the resting and task states for the AMC group and the control group are simulated with the above-mentioned dynamic model.In the resting state,there are the differences of brain activation between the AMC group and the control group,and more brain regions are inspired in the AMC group.A stimulus with sinusoidal signals to brain networks is introduced to simulate the brain dynamics in the task states.The dynamic characteristics are extracted by the excitation rates,the response intensities and the state distributions.The change in the functional connectivity of brain networks with the AMC training would in turn improve the brain response to external stimulus,and make the brain more efficient in processing tasks.
基金supported in part by the National Natural Sciences Foundation of China (NSFC) under Grant 61525103the National Natural Sciences Foundation of China under Grant 61501140the Shenzhen Fundamental Research Project under Grant JCYJ20150930150304185
文摘Dynamic spectrum access(DSA) based on cognitive radios(CR) technique is an effective approach to address the "spectrum scarcity" issue. However, traditional CR-enabled DSA system employs only single DSA strategy, which might not be suited to the dynamic network environment. In this paper, we propose a multi-strategy DSA(MS-DSA) system, where the primary and the secondary system share spectrum resources with multiple DSA strategies simultaneously. To analyze the performance of the proposed MS-DSA system, we model it as a continuous-time Markov chain(CTMC) and derive the expressions to compute the corresponding performance metrics. Based on this, we define a utility function involving the concerns of effective throughput, interference quantity on primary users, and spectrum leasing cost. Two optimization schemes, named as spectrum allocation and false alarm probability selection, are proposed to maximize the utility function. Finally, numerical simulations are provided to validate our analysis and demonstrate that the performance can be significantly improved caused by virtues of the proposed MS-DSA system.
基金Project supported by the National Natural Science Foundation of China (Grant No.60774088)the Program for New Century Excellent Talents of Higher Education of China (Grant No NCET 2005-290)the Special Research Fund for the Doctoral Program of Higher Education of China (Grant No 20050055013)
文摘In this paper, a dynamic epidemic control model on the uncorrelated complex networks is proposed. By means of theoretical analysis, we found that the new model has a similar epidemic threshold as that of the susceptible-infectedrecovered (SIR) model on the above networks, but it can reduce the prevalence of the infected individuals remarkably. This result may help us understand epidemic spreading phenomena on real networks and design appropriate strategies to control infections.
基金supported in part by the National Natural Science Foundation of China (Grant Nos.60874091 and 61104103)the Natural Science Fund for Colleges and Universities in Jiangsu Province,China (Grant No.10KJB120001)the Climbing Program of Nanjing University of Posts & Telecommunications,China (Grant Nos.NY210013 and NY210014)
文摘A problem of topology identification for complex dynamical networks is investigated in this paper. An adaptive observer is proposed to identify the topology of a complex dynamical networks based on the Lyapunov stability theory. Here the output of the network and the states of the observer are used to construct the updating law of the topology such that the communication resources from the network to its observer are saved. Some convergent criteria of the adaptive observer are derived in the form of linear inequality matrices. Several numerical examples are shown to demonstrate the effectiveness of the proposed observer.
基金supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2014ZX03006003)the ZTE Research and Development Fund
文摘A dynamic protocol stack(DPS) for ad hoc networks, together with a protocol stack construction scheme that is modeled as a multiconstrained knapsack problem is proposed. Compared to the traditional static protocol stack, DPS operates in a dynamic and adaptive manner and is scalable to network condition changes. In addition, a protocol construction algorithm is proposed to dynamically construct of the protocol stack each network node. Simulation results show that, the processing and forwarding performance of our scheme is close to 1 Gb/s, and the performance of our algorithm is close to that of the classical algorithms with much lower complexity.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10472091, 10502042 and 10332030) Graduate Starting Seed Fund of Northwestern Polytechnical University, China (Grant No Z200655)
文摘In this paper, based on the invaxiance principle of differential equations, we propose a simple adaptive control method to synchronize the network with coupling of the general form. Comparing with other control approaches, this scheme only depends on each node's state output. So we need not to know the concrete network structure and the solutions of the isolate nodes of the network in advance. In order to demonstrate the effectiveness of the method, a special example is provided and numerical simulations are performed. The numerical results show that our control scheme is very effective and robust against the weak noise.
基金Project supported by the National Natural Science Foundation of China(Grant No.61004101)the Natural Science Foundation Program of Guangxi Province,China(Grant No.2015GXNSFBB139002)+1 种基金the Graduate Innovation Project of Guilin University of Electronic Technology,China(Grant No.GDYCSZ201472)the Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation,Guilin University of Electronic Technology,China
文摘In this paper, successive lag synchronization (SLS) on a dynamical network with communication delay is investigated. In order to achieve SLS on the dynamical network with communication delay, we design linear feedback control and adaptive control, respectively. By using the Lyapunov function method, we obtain some sufficient conditions for global stability of SLS. To verify these results, some numerical examples are further presented. This work may find potential applications in consensus of multi-agent systems.
文摘In this article, a synchronization problem for master-slave Markovian switching complex dynamical networks with time-varying delays in nonlinear function via sliding mode control is investigated. On the basis of the appropriate Lyapunov-Krasovskii functional, introducing some free weighting matrices, new synchronization criteria are derived in terms of linear matrix inequalities (LMIs). Then, an integral sliding surface is designed to guarantee synchronization of master-slave Markovian switching complex dynamical networks, and the suitable controller is synthesized to ensure that the trajectory of the closed-loop error system can be driven onto the prescribed sliding mode surface. By using Dynkin's formula, we established the stochastic stablity of master-slave system. Finally, numerical example is provided to demonstrate the effectiveness of the obtained theoretical results.
基金Project supported by the National Natural Science Foundation of China (Grant No 10832006)the Key Projects of Educational Ministry of China (Grant No 107110)
文摘This paper concerns the disturbance rejection problem of a linear complex dynamical network subject to external disturbances. A dynamical network is said to be robust to disturbance, if the H∞ norm of its transfer function matrix from the disturbance to the performance variable is satisfactorily small. It is shown that the disturbance rejection problem of a dynamical network can be solved by analysing the H∞ control problem of a set of independent systems whose dimensions are equal to that of a single node. A counter-intuitive result is that the disturbance rejection level of the whole network with a diffusive coupling will never be better than that of an isolated node. To improve this, local feedback injections are applied to a small fraction of the nodes in the network. Some criteria for possible performance improvement are derived in terms of linear matrix inequalities. It is further demonstrated via a simulation example that one can indeed improve the disturbance rejection level of the network by pinning the nodes with higher degrees than pinning those with lower degrees.
基金supported in part by the Program for New Century Excellent Talents in University of China (Grant No. NCET-06-0510)the National Natural Science Foundation of China (Grant No. 60874091)
文摘This paper proposes a novel approach for fault diagnosis of a time-delay complex dynamical network. Unlike the other methods, assuming that the dynamics of the network can be described by a linear stochastic model, or using the state variables of nodes in the network to design an adaptive observer, it only uses the output variable of the nodes to design an observer and an adaptive law of topology matrix in the observer of a complex network, leading to simple design of the observer and easy realisation of topology monitoring for the complex networks in real engineering. The proposed scheme can monitor any changes of the topology structure of a time-delay complex network. The effectiveness of this method is successfully demonstrated by virtue of a complex networks with Lorenz model.
基金supported by the National High Technology Research and Development Program of P.R.China under Grant No.2012 AA121604 the National Natural Science Foundation of China under Grants No.60902042,No.61170014,No.61202079+1 种基金 the National Research Foundation for the Doctoral Program of Higher Education of China under Grant No.20090006110014 the Foundation for Key Program of Ministry of Education of China under Grant No.311007
文摘The architecture of cislunar multi-hop communication networks, which focuses on the requirements of lunar full-coverage and continuous cislunar communications, is presented on the basis of Geosynchronous Orbit (GEO) satellite network relays. According to the geographical distribution of the forthcoming Chinese Deep Space Measuring and Controlling Network (DSMCN), two networking schemes are proposed and two elevation angle optimization models are established for locating GEO relay satellites. To analyze the dynamic connectivity, a dynamic network model is constructed with respect to the time-varying characteristics of cislunar trunk links. The advantages of the two proposed schemes, in terms of the Connectivity Rate (CR), Interruption Frequency (IF), and Average Length of Connecting Duration (ALCD), are corroborated by several simulations. In the case of the lunar polar orbit constellation case, the gains in the performance of scheme I are observed to be 134.55%, 117.03%, and 217.47% compared with DSMCN for three evaluation indicators, and the gains in the performance of scheme II are observed to be 238. 22%, 240.40%, and 572.71%. The results validate that the connectivity of GEO satellites outperforms that of earth facilities significantly and schemes based on GEO satellite relays are promising options for cislunar multi-hop communication networking.
基金supported by the National Natural Science Foundation of China (Grant No.60974139)the Fundamental Research Funds for the Central Universities (Grant No.72103676)
文摘This paper studies the stochastic synchronization problem for time-varying complex dynamical networks. This model is totally different from some existing network models. Based on the Lyapunov stability theory, inequality techniques, and the properties of the Weiner process, some controllers and adaptive laws are designed to ensure achieving stochastic synchronization of a complex dynamical network model. A sufficient synchronization condition is given to ensure that the proposed network model is mean-square stable. Theoretical analysis and numerical simulation fully verify the main results.
基金supported in part by the National Natural Science Foundation of China (61771120)the Fundamental Research Funds for the Central Universities (N171602002)
文摘With the explosive growth of highspeed wireless data demand and the number of mobile devices, fog radio access networks(F-RAN) with multi-layer network structure becomes a hot topic in recent research. Meanwhile, due to the rapid growth of mobile communication traffic, high cost and the scarcity of wireless resources, it is especially important to develop an efficient radio resource management mechanism. In this paper, we focus on the shortcomings of resource waste, and we consider the actual situation of base station dynamic coverage and user requirements. We propose a spectrum pricing and allocation scheme based on Stackelberg game model under F-RAN framework, realizing the allocation of resource on demand. This scheme studies the double game between the users and the operators, as well as between the traditional operators and the virtual operators, maximizing the profits of the operators. At the same time, spectrum reuse technology is adopted to improve the utilization of network resource. By analyzing the simulation results, it is verified that our proposed scheme can not only avoid resource waste, but also effectively improve the operator's revenue efficiency and overall network resource utilization.
基金supported by the National Natural Science Foundation of China under Grant No.61231009the National High-tech Research and Development Program of China under Grant No.2014AA01A701the Program for New Century Excellent Talents in University of Ministry of Education of China under Grant No.NCET 12-0795
文摘Motivated by the objective of pursuing revenue, improvement in coverage and reduction in energy cost for wireless communication networks have been of great significance for mobile operators. Therefore, heterogeneous cellular networks(HCNs) and Coordinated Multipoint(Co MP) transmission are considered as promising solutions to enhance the performances of wireless communication systems. This paper analyzed the K-tier HCNs with a dynamic downlink Co MP scheme, in which the flexible clusters of cooperative stations are determined by a connecting threshold θ. Using stochastic geometry, the coverage probability(CP) and energy efficiency(EE) of a K-tier HCN operating under this scheme are derived, based on which the trade-off between CP and EE is discovered and discussed. Simulation results show the validity of our derivations. The proposed schememay significantly reduce energy consumption sacrificing a small amount of CP, and outperforms the fixed scheme as well. The CP-EE trade-off are also revealed, whichsuggests suitable trade-off points between CP and EE that will deliver the maximum economic profitability. Tendencies discovered in this paper may provide the operators with opportunities for further optimization in pursuit of economic profitability.