The stability control of surrounding rock for large or super-large section chamber is a difficult technical problem in deep mining condition.Based on the in-site geological conditions of Longgu coal mine,this paper us...The stability control of surrounding rock for large or super-large section chamber is a difficult technical problem in deep mining condition.Based on the in-site geological conditions of Longgu coal mine,this paper used the dynamic module of FLAC3D to study the response characteristics of deep super-large section chamber under dynamic and static combined loading condition.Results showed that under the static loading condition,the maximum vertical stress,deformation and failure range are large,where the stress concentration coefficient is 1.64.The maximum roof-to-floor and two-sides deformations are 54.6 mm and 53.1 mm,respectively.Then,under the dynamic and static combined loading condition:(1)The influence of dynamic load frequency on the two-sides is more obvious;(2)The dynamic load amplitude has the greatest influence on the stress concentration degree,and the plastic failure tends to develop to the deeper;(3)With the dynamic load source distance increase,the response of surrounding rock is gradually attenuated.On this basis,empirical equations for each dynamic load conditions were obtained by using regression analysis method,and all correlation coefficients are greater than 0.99.This research provided reference for the supporting design of deep super-large section chamber under same or similar conditions.展开更多
作为一种轻质高强材料,泡沫混凝土常用于滨海道路工程,结构承受着自重、波浪及交通载荷等多种静、动荷载作用。通过一系列静、动力三轴试验,研究了泡沫混凝土材料在静、动力加载条件下的变形与强度特性,并探讨动载历史对材料强度的影响...作为一种轻质高强材料,泡沫混凝土常用于滨海道路工程,结构承受着自重、波浪及交通载荷等多种静、动荷载作用。通过一系列静、动力三轴试验,研究了泡沫混凝土材料在静、动力加载条件下的变形与强度特性,并探讨动载历史对材料强度的影响。试验结果表明:泡沫混凝土在静压荷载作用下的变形发展呈现出先弹性后塑性的特点,其静力抗压强度约为1 040 k Pa;当动力荷载幅值较小时,泡沫混凝土变形将逐渐趋于稳定,且动弹性模量随应变增长变化较小;而当循环荷载幅值较大时,材料将发生动力破坏。此外,随着先期动力荷载幅值的增大,泡沫混凝土的静力抗压强度先增大后减小。研究结果揭示了泡沫混凝土材料在静、动荷载作用下的工作机理,可对类似工程的应用提供参考。展开更多
基金Project(2018YFC0604703)supported by the National Key R&D Program of ChinaProjects(51804181,51874190)supported by the National Natural Science Foundation of China+3 种基金Project(ZR2018QEE002)supported by the Shandong Province Natural Science Fund,ChinaProject(ZR2018ZA0603)supported by the Major Program of Shandong Province Natural Science Foundation,ChinaProject(2019GSF116003)supported by the Key R&D Project of Shandong Province,ChinaProject(SDKDYC190234)supported by the Shandong University of Science and Technology,Graduate Student Technology Innovation Project,China。
文摘The stability control of surrounding rock for large or super-large section chamber is a difficult technical problem in deep mining condition.Based on the in-site geological conditions of Longgu coal mine,this paper used the dynamic module of FLAC3D to study the response characteristics of deep super-large section chamber under dynamic and static combined loading condition.Results showed that under the static loading condition,the maximum vertical stress,deformation and failure range are large,where the stress concentration coefficient is 1.64.The maximum roof-to-floor and two-sides deformations are 54.6 mm and 53.1 mm,respectively.Then,under the dynamic and static combined loading condition:(1)The influence of dynamic load frequency on the two-sides is more obvious;(2)The dynamic load amplitude has the greatest influence on the stress concentration degree,and the plastic failure tends to develop to the deeper;(3)With the dynamic load source distance increase,the response of surrounding rock is gradually attenuated.On this basis,empirical equations for each dynamic load conditions were obtained by using regression analysis method,and all correlation coefficients are greater than 0.99.This research provided reference for the supporting design of deep super-large section chamber under same or similar conditions.
文摘作为一种轻质高强材料,泡沫混凝土常用于滨海道路工程,结构承受着自重、波浪及交通载荷等多种静、动荷载作用。通过一系列静、动力三轴试验,研究了泡沫混凝土材料在静、动力加载条件下的变形与强度特性,并探讨动载历史对材料强度的影响。试验结果表明:泡沫混凝土在静压荷载作用下的变形发展呈现出先弹性后塑性的特点,其静力抗压强度约为1 040 k Pa;当动力荷载幅值较小时,泡沫混凝土变形将逐渐趋于稳定,且动弹性模量随应变增长变化较小;而当循环荷载幅值较大时,材料将发生动力破坏。此外,随着先期动力荷载幅值的增大,泡沫混凝土的静力抗压强度先增大后减小。研究结果揭示了泡沫混凝土材料在静、动荷载作用下的工作机理,可对类似工程的应用提供参考。