Aiming at the characteristics of complex logic relation and multiple dynamic gates in system,its failure probability model is established based on dynamic fault tree. For the multi-state dynamic fault tree,it can be t...Aiming at the characteristics of complex logic relation and multiple dynamic gates in system,its failure probability model is established based on dynamic fault tree. For the multi-state dynamic fault tree,it can be transferred into Markov chain with continuous parameters. The state transfer diagram can be decomposed into several state transfer chains,and the failure probability models can be derived according to the lengths of the chains. Then,the failure probability of the dynamic fault tree analysis(DFTA) can be obtained by adding each chain's probability. The failure probability calculation of DFTA based on the continuous parameter Markov chain is proposed and proved. Given an example,the analytic method is compared with the conventional methods which have to solve the differential equation. It is known from the results that the analytic method can be applied to engineering easily.展开更多
面对日益复杂的飞机系统,传统的安全性分析方法对复杂系统间的不安全交互行为和危险源的识别能力不足。为有效评价持续适航阶段的飞机系统安全性,提出了一种融合系统理论过程分析(system theory process analysis,STPA)和动态故障树(dyn...面对日益复杂的飞机系统,传统的安全性分析方法对复杂系统间的不安全交互行为和危险源的识别能力不足。为有效评价持续适航阶段的飞机系统安全性,提出了一种融合系统理论过程分析(system theory process analysis,STPA)和动态故障树(dynamic fault tree,DFT)的改进的STPA安全性分析方法和评价模型。模型采用STPA识别出不安全控制行为和致因因素,并将其与动态故障树分析方法相融合,以事故致因理论优化致因分析方法,计算得出不安全控制行为发生概率并确定系统潜在危险的关键致因因素。以飞机起落架系统为例进行分析验证,结果表明,改进后的STPA分析方法可以准确地对系统危险进行识别和分析,为持续适航阶段的安全性分析提供支持。展开更多
文摘Aiming at the characteristics of complex logic relation and multiple dynamic gates in system,its failure probability model is established based on dynamic fault tree. For the multi-state dynamic fault tree,it can be transferred into Markov chain with continuous parameters. The state transfer diagram can be decomposed into several state transfer chains,and the failure probability models can be derived according to the lengths of the chains. Then,the failure probability of the dynamic fault tree analysis(DFTA) can be obtained by adding each chain's probability. The failure probability calculation of DFTA based on the continuous parameter Markov chain is proposed and proved. Given an example,the analytic method is compared with the conventional methods which have to solve the differential equation. It is known from the results that the analytic method can be applied to engineering easily.
文摘面对日益复杂的飞机系统,传统的安全性分析方法对复杂系统间的不安全交互行为和危险源的识别能力不足。为有效评价持续适航阶段的飞机系统安全性,提出了一种融合系统理论过程分析(system theory process analysis,STPA)和动态故障树(dynamic fault tree,DFT)的改进的STPA安全性分析方法和评价模型。模型采用STPA识别出不安全控制行为和致因因素,并将其与动态故障树分析方法相融合,以事故致因理论优化致因分析方法,计算得出不安全控制行为发生概率并确定系统潜在危险的关键致因因素。以飞机起落架系统为例进行分析验证,结果表明,改进后的STPA分析方法可以准确地对系统危险进行识别和分析,为持续适航阶段的安全性分析提供支持。