Based on the system dynamic model, a full system dynamics estimation method is proposed for a chain shell magazine driven by a permanent magnet synchronous motor(PMSM). An adaptive extended state observer(AESO) is pro...Based on the system dynamic model, a full system dynamics estimation method is proposed for a chain shell magazine driven by a permanent magnet synchronous motor(PMSM). An adaptive extended state observer(AESO) is proposed to estimate the unmeasured states and disturbance, in which the model parameters are adjusted in real time. Theoretical analysis shows that the estimation errors of the disturbances and unmeasured states converge exponentially to zero, and the parameter estimation error can be obtained from the extended state. Then, based on the extended state of the AESO, a novel parameter estimation law is designed. Due to the convergence of AESO, the novel parameter estimation law is insensitive to controllers and excitation signal. Under persistent excitation(PE) condition, the estimated parameters will converge to a compact set around the actual parameter value. Without PE signal, the estimated parameters will converge to zero for the extended state. Simulation and experimental results show that the proposed method can accurately estimate the unmeasured states and disturbance of the chain shell magazine, and the estimated parameters will converge to the actual value without strictly continuous PE signals.展开更多
The problem of recognizing natural scenes, such as water, smoke, fire, wind-blown vegetation and a flock of flying birds, is considered. These scenes exhibit the characteristic dynamic pattern, but have stochastic ext...The problem of recognizing natural scenes, such as water, smoke, fire, wind-blown vegetation and a flock of flying birds, is considered. These scenes exhibit the characteristic dynamic pattern, but have stochastic extent. They are referred to as dynamic texture(DT). In reality, the diversity of DTs on different viewpoints and scales are very common, which also bring great difficulty to recognize DTs. In the previous studies, due to no considering of the deformable and transient nature of elements in DT, the motion estimation method is based on brightness constancy assumption,which seem inappropriate for aggregate and complex motions. A novel motion model based on relative motion in the neighborhood of two-dimensional motion fields is proposed. The estimation of non-rigid motion of DTs is based on the continuity equation, and then the local vector difference(LVD) is proposed to characterize DT local relative motion. Spatiotemporal statistics of the LVDs is used as the representation of DT sequences. Excellent performances of classifying all DTs in UCLA database demonstrate the capability of the proposed method in describing DT.展开更多
文摘Based on the system dynamic model, a full system dynamics estimation method is proposed for a chain shell magazine driven by a permanent magnet synchronous motor(PMSM). An adaptive extended state observer(AESO) is proposed to estimate the unmeasured states and disturbance, in which the model parameters are adjusted in real time. Theoretical analysis shows that the estimation errors of the disturbances and unmeasured states converge exponentially to zero, and the parameter estimation error can be obtained from the extended state. Then, based on the extended state of the AESO, a novel parameter estimation law is designed. Due to the convergence of AESO, the novel parameter estimation law is insensitive to controllers and excitation signal. Under persistent excitation(PE) condition, the estimated parameters will converge to a compact set around the actual parameter value. Without PE signal, the estimated parameters will converge to zero for the extended state. Simulation and experimental results show that the proposed method can accurately estimate the unmeasured states and disturbance of the chain shell magazine, and the estimated parameters will converge to the actual value without strictly continuous PE signals.
基金supported by the National Natural Science Foundation of China(41504115)the Shaanxi Province Natural Science Foundation(2015JQ6223)+2 种基金the Foundation of Strengthening Police Science and Technology from Ministry of Public Security(2015GABJC50)the International Technology Cooperation Plan Project of Shaanxi Province(2015KW-0142015KW-013)
文摘The problem of recognizing natural scenes, such as water, smoke, fire, wind-blown vegetation and a flock of flying birds, is considered. These scenes exhibit the characteristic dynamic pattern, but have stochastic extent. They are referred to as dynamic texture(DT). In reality, the diversity of DTs on different viewpoints and scales are very common, which also bring great difficulty to recognize DTs. In the previous studies, due to no considering of the deformable and transient nature of elements in DT, the motion estimation method is based on brightness constancy assumption,which seem inappropriate for aggregate and complex motions. A novel motion model based on relative motion in the neighborhood of two-dimensional motion fields is proposed. The estimation of non-rigid motion of DTs is based on the continuity equation, and then the local vector difference(LVD) is proposed to characterize DT local relative motion. Spatiotemporal statistics of the LVDs is used as the representation of DT sequences. Excellent performances of classifying all DTs in UCLA database demonstrate the capability of the proposed method in describing DT.