This study designs four types of liquid-filled cylindrical shell structures to investigate their protection characteristics against explosive shock waves and high-speed fragments.Bare charge and charge-driven prefabri...This study designs four types of liquid-filled cylindrical shell structures to investigate their protection characteristics against explosive shock waves and high-speed fragments.Bare charge and charge-driven prefabricated fragments are employed to examine the damage under blast shock waves and combined blast and fragments loading on various liquid-filled cylindrical shell structures.The test results are compared to numerical calculations and theoretical analysis for the structure's deformation,the liquid medium's movement,and the pressure waves'propagation characteristics under different liquid-filling methods.The results showed that the filling method influences the blast protection and the struc-ture's energy absorption performance.The external filling method reduces the structural deformation,and the internal filling method increases the damage effect.The gapped internal filling method improves the structure's energy absorption efficiency.The pressure wave loading on the liquid-filled cylindrical shell structure differs depending on filling methods.Explosive shock waves and high-speed fragments show a damage enhancement effect on the liquid-filled cylindrical shell structure,depending on the thickness of the internal liquid container layer.The specific impulse on the inner surface of the cylindrical shell positively correlates to the radial deformation of the cylindrical shell structure,and the external liquid layer limits the radial structural deformation.展开更多
传统电动汽车充电负荷建模通常采用对电动汽车个体进行抽样模拟的方式,未能从分析机理的角度描述电动汽车群体相互作用形成的宏观运行状态。为此,提出一种基于半动态交通均衡模型和组合荷电状态(combined states of the charge,CSOC)概...传统电动汽车充电负荷建模通常采用对电动汽车个体进行抽样模拟的方式,未能从分析机理的角度描述电动汽车群体相互作用形成的宏观运行状态。为此,提出一种基于半动态交通均衡模型和组合荷电状态(combined states of the charge,CSOC)概率计算的电动汽车充电负荷概率分布计算方法。首先,分析电动汽车的交通特性和充电特性,并提出一种可行路径集构建方法;然后,引入交通均衡理论进行电动汽车空间分布建模,建立考虑随机效用的半动态交通均衡模型,实现宏观交通流均衡分配。进一步地,从理论层面分析电动汽车群的荷电状态变化,建立基于CSOC的充电负荷概率分布计算模型。最后,分别在13节点路网和实际大路网中验证所提方法的有效性,并分析了电动汽车渗透率和路网结构对充电负荷概率分布的影响。展开更多
基金the National Natural Science Foundation of China(Grant Nos.52371342,52271338,52101378 and 51979277)。
文摘This study designs four types of liquid-filled cylindrical shell structures to investigate their protection characteristics against explosive shock waves and high-speed fragments.Bare charge and charge-driven prefabricated fragments are employed to examine the damage under blast shock waves and combined blast and fragments loading on various liquid-filled cylindrical shell structures.The test results are compared to numerical calculations and theoretical analysis for the structure's deformation,the liquid medium's movement,and the pressure waves'propagation characteristics under different liquid-filling methods.The results showed that the filling method influences the blast protection and the struc-ture's energy absorption performance.The external filling method reduces the structural deformation,and the internal filling method increases the damage effect.The gapped internal filling method improves the structure's energy absorption efficiency.The pressure wave loading on the liquid-filled cylindrical shell structure differs depending on filling methods.Explosive shock waves and high-speed fragments show a damage enhancement effect on the liquid-filled cylindrical shell structure,depending on the thickness of the internal liquid container layer.The specific impulse on the inner surface of the cylindrical shell positively correlates to the radial deformation of the cylindrical shell structure,and the external liquid layer limits the radial structural deformation.
文摘传统电动汽车充电负荷建模通常采用对电动汽车个体进行抽样模拟的方式,未能从分析机理的角度描述电动汽车群体相互作用形成的宏观运行状态。为此,提出一种基于半动态交通均衡模型和组合荷电状态(combined states of the charge,CSOC)概率计算的电动汽车充电负荷概率分布计算方法。首先,分析电动汽车的交通特性和充电特性,并提出一种可行路径集构建方法;然后,引入交通均衡理论进行电动汽车空间分布建模,建立考虑随机效用的半动态交通均衡模型,实现宏观交通流均衡分配。进一步地,从理论层面分析电动汽车群的荷电状态变化,建立基于CSOC的充电负荷概率分布计算模型。最后,分别在13节点路网和实际大路网中验证所提方法的有效性,并分析了电动汽车渗透率和路网结构对充电负荷概率分布的影响。