The structure parameters in an actual industrial production have a great influence on the coefficient of supercharger floating bearing dynamic characteristics,but there has been little systematic study so far.In this ...The structure parameters in an actual industrial production have a great influence on the coefficient of supercharger floating bearing dynamic characteristics,but there has been little systematic study so far.In this paper,the influence of structural parameters of the turbocharger floating bearing on its dynamic characteristic coefficientsis systematically investigated based on the theories of hydrodynamic lubrication and tribology.The influence of clearance ratio on eccentricity and the influence of internal to external radius ratios,and Sommerfeld number were analyzed.A new formula of responding characteristics of the oil film force caused by the displacement or velocity disturbance was deduced near an equilibrium in the steady state.Applying the newly developed formula,the dynamic characteristic was studied for floating bearings.Regularity for change of oil film stiffness and damping was analyzed with the structural parameters of floating bearing such as radius ratios and eccentricity.It has been found that the clearance ratio increases with eccentricity when the radius ratio is unchanged.The eccentricity decreases with the internal to external radius ratio of floating rings when the clearance ratio is constant.The absolute value of total principal stiffness and total main damping decrease with the clearance ratio and radius ratio of floating rings when the total cross damping is stable.The results and findings in this paper can contribute to nonlinear dynamics designs of turbocharger rotor-bearing systems.展开更多
The static and dynamic diffusion coefficients are important coefficients to describe the moisture transfer processes in particleboard. In this paper, the formula of culculating the static and dynamic diffusion coeffic...The static and dynamic diffusion coefficients are important coefficients to describe the moisture transfer processes in particleboard. In this paper, the formula of culculating the static and dynamic diffusion coefficients were deduced. At first, the static diffusion coefficients of four kinds of particleboards were determined by using diffusion cup method. The results demonstrated that the static diffusion coefficients parallel to panel surface were 10-20 times as large as that of perpendicular to panel surface for test boards. To determine both dynamic diffusion coefficients and surface emission coefficients of moisture in particleboards in one experimental period, specimens in four different thicknesses of each kind of particleboard were used in the experiment. Then the method of regression was used and the dynamic diffusion coefficients and surface emission coefficients were determined based on the slope and intercept of the regressive line.展开更多
In order to study the dynamic response and calculate the axial dynamic coefficient of the monolayer cylindrical explosion vessel,the wall of vessel is simplified as a multi-degree-of-freedom(MDoF) undamped elastic fou...In order to study the dynamic response and calculate the axial dynamic coefficient of the monolayer cylindrical explosion vessel,the wall of vessel is simplified as a multi-degree-of-freedom(MDoF) undamped elastic foundation beam.Decoupling the coupled motion equation and using Duhamel's integrals,the solutions in generalized coordinates of the equations under exponentially decaying loads,square wave loads and triangular wave loads are calculated.These solutions are consistent in form with the solutions of single-degree-of-freedom(SDoF) undamped forced vibration simplified model.Based on the model,equivalent MDoF design method(also called MDoF dynamic coefficient method) of cylindrical explosion vessel is proposed.The traditional method can only predict the dynamic coefficient of torus portion around the explosion center,but this method can predict that of the vessel wall at any axial n dividing point position.It is verified that the prediction accuracy of this model is greatly improved compared with the SDoF model by comparing the results of this model with SDoF model and numerical simulation in different working conditions.However,the prediction accuracy decreases as the scaled distance decreases and approaches the end of the vessel,which is related to the accuracy of the empirical formula of the implosion load,the simplification of the explosion load direction,the boundary conditions,and the loading time difference.展开更多
A new method of artificial intelligence based on a new improved back propagation neural network (BPNN) algorithm is partially applied in the problem of image restoration. In order to over- come the inherited issues ...A new method of artificial intelligence based on a new improved back propagation neural network (BPNN) algorithm is partially applied in the problem of image restoration. In order to over- come the inherited issues in conventional back propagation algorithm i.e. slow convergence rate, longer training time, hard to achieve global minima etc. , different methods have been used including the introduction of dynamic learning rate and dynamic momentum coefficient etc. With the passage of time different techniques has been used to improve the dynamicity of these coefficients. The meth- od applied in this paper improves the effect of learning coefficient η by using a new way to modify the value dynamically during learning process. The experimental results show that this helps in im- proving the efficiency overall both in visual effect and quality analysis.展开更多
Based on the Tersoff potential, molecular dynamics simulations have been performed to investigate the kinetic coefficients and growth velocities of Si(100),(110),(111), and(112) planes. The sequences of the ki...Based on the Tersoff potential, molecular dynamics simulations have been performed to investigate the kinetic coefficients and growth velocities of Si(100),(110),(111), and(112) planes. The sequences of the kinetic coefficients and growth velocities are μ((100))〉 μ((110))〉 μ((112))〉 μ((111))and v((100))〉 v((110))〉 v((112))〉 v((111)), respectively, which are not consistent with the sequences of the interface energies, interplanar spacings, and melting points of the four planes. However,they agree well with the sequences of the distributions and diffusion coefficients of the melting atoms near the solid–liquid interfaces. It indicates that the atomic distributions and diffusion coefficients affected by the crystal orientations determine the anisotropic growth of silicon. The formation of stacking fault structure will further decrease the growth velocity of the Si(111) plane.展开更多
When the machine tool is in the start-and stop-stages,the stick-slip phenomenon will be observed and highprecision positioning,machining accuracy and fretting feed will not be guaranteed. The most critical reason is t...When the machine tool is in the start-and stop-stages,the stick-slip phenomenon will be observed and highprecision positioning,machining accuracy and fretting feed will not be guaranteed. The most critical reason is that there is the difference between the dynamic and the static friction coefficients. Textures with different area ratios are fabricated on the surfaces of the upper PTFE-based composite and the friction tests are carried out on a reciprocating tribotester under the boundary lubrication and flat-on-flat contact conditions. The results show that there exists an optimal textured area ratio of 19.6% that can minimize the difference between the dynamic and the static friction coefficients.展开更多
As high-rise cooling towers are constantly emerging,wind effects on this kind of wind-sensitive structures have attracted more and more attention,especially in typhoon prone areas.Terrain Type B turbulent flow fields ...As high-rise cooling towers are constantly emerging,wind effects on this kind of wind-sensitive structures have attracted more and more attention,especially in typhoon prone areas.Terrain Type B turbulent flow fields under the normal wind and typhoon are simulated by active wind tunnel technology,and rigid-pressure-measurement model and aero-elastic-vibration-measurement model of a large cooling tower are built.The stagnation point,peak suction point,separation point and leeward point of the throat position shell are selected to analyze pressure coefficient,probability distribution,peak factor,power spectral density and dynamic amplification factor under normal wind and typhoon.It is clarified that there exists a significant non-Gaussian characteristic under typhoon condition,which also exists in structural response level.Resonance response ratio of the total response is higher during typhoon condition.The maximum value of dynamic amplification coefficient under typhoon field is up to 1.18 times over that under normal wind.The findings of this study are expected to be of interest and practical use to professional and researchers involved in the wind-resistant designs of super-large cooling towers in typhoon prone regions.展开更多
基金Supported by the Natural Science Foundation of Shanxi Province Project(2012011023-2)
文摘The structure parameters in an actual industrial production have a great influence on the coefficient of supercharger floating bearing dynamic characteristics,but there has been little systematic study so far.In this paper,the influence of structural parameters of the turbocharger floating bearing on its dynamic characteristic coefficientsis systematically investigated based on the theories of hydrodynamic lubrication and tribology.The influence of clearance ratio on eccentricity and the influence of internal to external radius ratios,and Sommerfeld number were analyzed.A new formula of responding characteristics of the oil film force caused by the displacement or velocity disturbance was deduced near an equilibrium in the steady state.Applying the newly developed formula,the dynamic characteristic was studied for floating bearings.Regularity for change of oil film stiffness and damping was analyzed with the structural parameters of floating bearing such as radius ratios and eccentricity.It has been found that the clearance ratio increases with eccentricity when the radius ratio is unchanged.The eccentricity decreases with the internal to external radius ratio of floating rings when the clearance ratio is constant.The absolute value of total principal stiffness and total main damping decrease with the clearance ratio and radius ratio of floating rings when the total cross damping is stable.The results and findings in this paper can contribute to nonlinear dynamics designs of turbocharger rotor-bearing systems.
文摘The static and dynamic diffusion coefficients are important coefficients to describe the moisture transfer processes in particleboard. In this paper, the formula of culculating the static and dynamic diffusion coefficients were deduced. At first, the static diffusion coefficients of four kinds of particleboards were determined by using diffusion cup method. The results demonstrated that the static diffusion coefficients parallel to panel surface were 10-20 times as large as that of perpendicular to panel surface for test boards. To determine both dynamic diffusion coefficients and surface emission coefficients of moisture in particleboards in one experimental period, specimens in four different thicknesses of each kind of particleboard were used in the experiment. Then the method of regression was used and the dynamic diffusion coefficients and surface emission coefficients were determined based on the slope and intercept of the regressive line.
基金supported by grants from the Department of Infrastructure Barracks and National Science-Technology Support Plan(Grants No.BY209J033 and 2012BAK05B01)。
文摘In order to study the dynamic response and calculate the axial dynamic coefficient of the monolayer cylindrical explosion vessel,the wall of vessel is simplified as a multi-degree-of-freedom(MDoF) undamped elastic foundation beam.Decoupling the coupled motion equation and using Duhamel's integrals,the solutions in generalized coordinates of the equations under exponentially decaying loads,square wave loads and triangular wave loads are calculated.These solutions are consistent in form with the solutions of single-degree-of-freedom(SDoF) undamped forced vibration simplified model.Based on the model,equivalent MDoF design method(also called MDoF dynamic coefficient method) of cylindrical explosion vessel is proposed.The traditional method can only predict the dynamic coefficient of torus portion around the explosion center,but this method can predict that of the vessel wall at any axial n dividing point position.It is verified that the prediction accuracy of this model is greatly improved compared with the SDoF model by comparing the results of this model with SDoF model and numerical simulation in different working conditions.However,the prediction accuracy decreases as the scaled distance decreases and approaches the end of the vessel,which is related to the accuracy of the empirical formula of the implosion load,the simplification of the explosion load direction,the boundary conditions,and the loading time difference.
基金Supported by the National Natural Science Foundation of China (60772066)Higher Education Commission of Pakistan
文摘A new method of artificial intelligence based on a new improved back propagation neural network (BPNN) algorithm is partially applied in the problem of image restoration. In order to over- come the inherited issues in conventional back propagation algorithm i.e. slow convergence rate, longer training time, hard to achieve global minima etc. , different methods have been used including the introduction of dynamic learning rate and dynamic momentum coefficient etc. With the passage of time different techniques has been used to improve the dynamicity of these coefficients. The meth- od applied in this paper improves the effect of learning coefficient η by using a new way to modify the value dynamically during learning process. The experimental results show that this helps in im- proving the efficiency overall both in visual effect and quality analysis.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51361022,51561022,and 61464007)the Natural Science Foundation of Jiangxi Province,China(Grant No.20151BAB206001)
文摘Based on the Tersoff potential, molecular dynamics simulations have been performed to investigate the kinetic coefficients and growth velocities of Si(100),(110),(111), and(112) planes. The sequences of the kinetic coefficients and growth velocities are μ((100))〉 μ((110))〉 μ((112))〉 μ((111))and v((100))〉 v((110))〉 v((112))〉 v((111)), respectively, which are not consistent with the sequences of the interface energies, interplanar spacings, and melting points of the four planes. However,they agree well with the sequences of the distributions and diffusion coefficients of the melting atoms near the solid–liquid interfaces. It indicates that the atomic distributions and diffusion coefficients affected by the crystal orientations determine the anisotropic growth of silicon. The formation of stacking fault structure will further decrease the growth velocity of the Si(111) plane.
基金financially supported by the National Natural Science Foundation of China (No. 51675268)
文摘When the machine tool is in the start-and stop-stages,the stick-slip phenomenon will be observed and highprecision positioning,machining accuracy and fretting feed will not be guaranteed. The most critical reason is that there is the difference between the dynamic and the static friction coefficients. Textures with different area ratios are fabricated on the surfaces of the upper PTFE-based composite and the friction tests are carried out on a reciprocating tribotester under the boundary lubrication and flat-on-flat contact conditions. The results show that there exists an optimal textured area ratio of 19.6% that can minimize the difference between the dynamic and the static friction coefficients.
基金supported by the National Key Research and Development Program of China (Nos. 2018YFC0809600,2018YFC0809604)the National Natural Science Foundation of China(No.51678451).
文摘As high-rise cooling towers are constantly emerging,wind effects on this kind of wind-sensitive structures have attracted more and more attention,especially in typhoon prone areas.Terrain Type B turbulent flow fields under the normal wind and typhoon are simulated by active wind tunnel technology,and rigid-pressure-measurement model and aero-elastic-vibration-measurement model of a large cooling tower are built.The stagnation point,peak suction point,separation point and leeward point of the throat position shell are selected to analyze pressure coefficient,probability distribution,peak factor,power spectral density and dynamic amplification factor under normal wind and typhoon.It is clarified that there exists a significant non-Gaussian characteristic under typhoon condition,which also exists in structural response level.Resonance response ratio of the total response is higher during typhoon condition.The maximum value of dynamic amplification coefficient under typhoon field is up to 1.18 times over that under normal wind.The findings of this study are expected to be of interest and practical use to professional and researchers involved in the wind-resistant designs of super-large cooling towers in typhoon prone regions.