The damage of the self-compacting concrete in CRTSⅢslab ballastless track on bridge will lead to a partial void of the track slab,which will affect the comfort and safety of the train and the durability of the track ...The damage of the self-compacting concrete in CRTSⅢslab ballastless track on bridge will lead to a partial void of the track slab,which will affect the comfort and safety of the train and the durability of the track slab and bridge structure.In order to study the impact of the interface crack on the dynamic response of CRTSⅢballastless track system on bridge,based on the principle of multi-body dynamics theory and ANSYS+SIMPACK co-simulation,the spatial model of vehicle-track-bridge integration considering the longitudinal stiffness of supports,the track structure and interlayer contact characteristics were established.The dynamic characteristics of the system under different conditions of the width,length and position of the interface crack were analysed,and the limited values of the length and width of the cracks at the track slab edge were proposed.The results show that when the self-compacting concrete does not completely void along the transverse direction of the track slab,the crack has little effect on the dynamic characteristics of the vehicle-track-bridge system.However,when the self-compacting concrete is completely hollowed out along the transverse direction of the track slab,the dynamic amplitudes of the system increase.When the crack length is 1.6 m,the wheel load reduction rate reaches 0.769,which exceeds the limit value and threatens the safety of train operation.The vertical acceleration of the track slab increases by 250.1%,which affects the service life of the track system under the train speed of 200 km/h.展开更多
Pile-slab structure roadbed is a new form of ballastless track for high speed railway. Due to lack of corresponding design code, based on the analysis of its structure characteristics and application requirements, it ...Pile-slab structure roadbed is a new form of ballastless track for high speed railway. Due to lack of corresponding design code, based on the analysis of its structure characteristics and application requirements, it is proposed to carry out load effect combination according to ultimate limit state and serviceability limit state, and the most unfavorable combination of each state is chosen to carry through design calculation for pile-slab structure. Space model of pile-slab structure can be simplified as a plane flame model, by using the orthogonal test method, and the design parameter of pile-slab structure is optimized. Moreover, based on the engineering background of Suining-Chongqing high-speed railway, the dynamic deformation characteristics of pile-slab structure roadbed are further researched by carrying on the indoor dynamic model test. The test results show that the settlement after construction of subgrade satisfies the requirement of settlement control to build ballastless track on soil subgrade for high-speed railway. Slab structure plays the role of arch shell as load is transmitted from slab to pile, and the vertical dynamic stress of subgrade soil is approximately of "K" form distribution with the depth. The distribution of pile stress is closely related to soil characteristics, which has an upset triangle shape where the large dynamic stress is at the top. Pile compared with soil shares most dynamic stress. Pile structure expands the depth of the dynamic response of subgrade has limited effect on dynamic response. These results can provide subgrade. and improves the stress of subgrade soil, and the speed of train scientific basis for pile-slab structure roadbed used on soil展开更多
In this paper, a model order reduction strategy is adopted for the static and dynamic behaviour simulation of a high-speed tracked vehicle. The total number of degree of freedom of the structure is condensed through a...In this paper, a model order reduction strategy is adopted for the static and dynamic behaviour simulation of a high-speed tracked vehicle. The total number of degree of freedom of the structure is condensed through a selection of interface degrees of freedom and significant global mode shapes, for an approximated description of vehicle dynamic behaviour. The methodology is implemented in a customised open-source software to reduce the computational efforts. The modelled tracked vehicle includes the sprung mass, the unsprung masses, connected by means of torsional bars, and all the track assemblies, composing the track chain. The proposed research activity presents a comprehensive investigation of the influence of the track chain, combined with longitudinal vehicle speed, on statics and vehicle dynamics, focusing on vertical dynamics. The vehicle response has been investigated both in frequency and time domain. In this last case road-wheel displacements are assumed as inputs for the model, under different working conditions, hence considering several road profiles with different amplitudes and characteristic excitation frequencies. Simulation results have proven a high fidelity in model order reduction approach and a significant contribution of the track chain in the global dynamic behaviour of the tracked vehicle.展开更多
As a dynamic projection to latent structures(PLS)method with a good output prediction ability,dynamic inner PLS(DiPLS)is widely used in the prediction of key performance indi-cators.However,due to the oblique decompos...As a dynamic projection to latent structures(PLS)method with a good output prediction ability,dynamic inner PLS(DiPLS)is widely used in the prediction of key performance indi-cators.However,due to the oblique decomposition of the input space by DiPLS,there are false alarms in the actual industrial process during fault detection.To address the above problems,a dynamic modeling method based on autoregressive-dynamic inner total PLS(AR-DiTPLS)is proposed.The method first uses the regression relation matrix to decompose the input space orthogonally,which reduces useless information for the predic-tion output in the quality-related dynamic subspace.Then,a vector autoregressive model(VAR)is constructed for the predic-tion score to separate dynamic information and static informa-tion.Based on the VAR model,appropriate statistical indicators are further constructed for online monitoring,which reduces the occurrence of false alarms.The effectiveness of the method is verified by a Tennessee-Eastman industrial simulation process and a three-phase flow system.展开更多
The electric transmission system congfiguration-2 is one of the main electric drives for tracked vehicles. The geometrical model for the power-train cabin is established and the preliminary design for its cooling syst...The electric transmission system congfiguration-2 is one of the main electric drives for tracked vehicles. The geometrical model for the power-train cabin is established and the preliminary design for its cooling system is implemented. The mathematic model is established for thermal current field computation, simulation and analysis in the powertrain cabin. The three-dimensional structure of the powertrain cabin is optimized. The validity of the cooling system design is proved. The foundation for optimizing the whole electric transmission system configuration is laid.展开更多
The AERORail, a new aerial transport platform, was chosen as the object of this work. Following a review of the literature on static behaviors, model tests on the basic dynamic mechanical characteristics were conducte...The AERORail, a new aerial transport platform, was chosen as the object of this work. Following a review of the literature on static behaviors, model tests on the basic dynamic mechanical characteristics were conducted. A series of 90 tests were completed with different factors, including tension force, vehicle load and vehicle speed. With regard to the proper tension and vehicle load, at a certain speed range, the tension increments of the rail's cable were proved relatively small. It can be assumed that the change of tension is small and can be reasonably ignored when the tension of an entire span is under a dynamic load. When the tension reaches a certain range, the calculation of the cable track structure using classical cable theory is acceptable. The tests prove that the average maximum dynamic amplification factor of the deflection is small, generally no more than 1.2. However, when the vehicle speed reaches a certain value, the amplified factor will reach 2.0. If the moving loads increase, the dynamic amplification factor of dynamic deflection will also increase. The tension will change the rigidity of the structure and the vibration frequency; furthermore, the resonance speed will change at a certain tension. The vibration is noticeable when vehicles pass through at the resonance speed, and this negative impact on driving comfort requires the right velocity to avoid the resonance. The results demonstrate that more design details are required for the AERORail structure.展开更多
The dynamic characteristic analysis model of antenna structures is built,in which the structural physical parameters and geometrical dimensions are all considered as unascertained variables.And a structure dynamic cha...The dynamic characteristic analysis model of antenna structures is built,in which the structural physical parameters and geometrical dimensions are all considered as unascertained variables.And a structure dynamic characteristic analysis method based on the unascertained factor method is given.The computational expression of structural characteristic is developed by the mathematics expression of unascertained factor and the principles of unascertained rational numbers arithmetic.An example is given,in which the possible values and confidence degrees of the unascertained structure characteristics are obtained.The calculated results show that the method is feasible and effective.展开更多
The functions and system structure of DSA 1 Type direct shear apparatus were described, which is noted for its various functions, advanced techniques of multi desciplines. The apparatus adopted advanced measuring syst...The functions and system structure of DSA 1 Type direct shear apparatus were described, which is noted for its various functions, advanced techniques of multi desciplines. The apparatus adopted advanced measuring system and has high accuracy of testing data. It provide a new technical measure for the study of dynamic characteristics of bulk solid.展开更多
The northern Tibet plateau is the core of generalized Qinghai—Tibet plateau. The main part of Qiangtang—Changdu massif, which is 45×10 4km 2 and more than 5000m in altitude, conforms to the northern Tibet plate...The northern Tibet plateau is the core of generalized Qinghai—Tibet plateau. The main part of Qiangtang—Changdu massif, which is 45×10 4km 2 and more than 5000m in altitude, conforms to the northern Tibet plateau in area.1 The shape features and boundary conditions of Qiangtang—Changdu massif\;(1) Qiangtang—Changdu massif shows huge flat\|lying “S” area In MSS7 mosaic image, Qiangtang—Changdu massif extends in west and east, and appears a long\|elliptic huge block composed of feathered and dendritic textures.. Noticeably, there are two similar texture “tails" in the west and east ends of the massif. The western tail turns and constringes to the north, and eastern tail to the south. Thereby, the massif shows huge “S" area. According to the regional analysis, the eastern tail locates between Shaluli Mt.\|Taniantaweng Mt. and Mujiang River, and western part through Bangong\|Co connects with Pamirs along Karakoram Mt. In regional tectonics, the massif locates between Lazhulong\|Xijinwulan\|Co\|Jinshajiang River and Bangong\|Co\|Dongqiao\|Nujiang River fault belts.展开更多
基金Project(2017YFB1201204)supported by National Key R&D Program of China。
文摘The damage of the self-compacting concrete in CRTSⅢslab ballastless track on bridge will lead to a partial void of the track slab,which will affect the comfort and safety of the train and the durability of the track slab and bridge structure.In order to study the impact of the interface crack on the dynamic response of CRTSⅢballastless track system on bridge,based on the principle of multi-body dynamics theory and ANSYS+SIMPACK co-simulation,the spatial model of vehicle-track-bridge integration considering the longitudinal stiffness of supports,the track structure and interlayer contact characteristics were established.The dynamic characteristics of the system under different conditions of the width,length and position of the interface crack were analysed,and the limited values of the length and width of the cracks at the track slab edge were proposed.The results show that when the self-compacting concrete does not completely void along the transverse direction of the track slab,the crack has little effect on the dynamic characteristics of the vehicle-track-bridge system.However,when the self-compacting concrete is completely hollowed out along the transverse direction of the track slab,the dynamic amplitudes of the system increase.When the crack length is 1.6 m,the wheel load reduction rate reaches 0.769,which exceeds the limit value and threatens the safety of train operation.The vertical acceleration of the track slab increases by 250.1%,which affects the service life of the track system under the train speed of 200 km/h.
基金Foundation item: Project(2013CB036405) supported by the National Basic Research Program of China Project(KZZD-EW-05) supported by the Key Research Program of the Chinese Academy of Sciences
文摘Pile-slab structure roadbed is a new form of ballastless track for high speed railway. Due to lack of corresponding design code, based on the analysis of its structure characteristics and application requirements, it is proposed to carry out load effect combination according to ultimate limit state and serviceability limit state, and the most unfavorable combination of each state is chosen to carry through design calculation for pile-slab structure. Space model of pile-slab structure can be simplified as a plane flame model, by using the orthogonal test method, and the design parameter of pile-slab structure is optimized. Moreover, based on the engineering background of Suining-Chongqing high-speed railway, the dynamic deformation characteristics of pile-slab structure roadbed are further researched by carrying on the indoor dynamic model test. The test results show that the settlement after construction of subgrade satisfies the requirement of settlement control to build ballastless track on soil subgrade for high-speed railway. Slab structure plays the role of arch shell as load is transmitted from slab to pile, and the vertical dynamic stress of subgrade soil is approximately of "K" form distribution with the depth. The distribution of pile stress is closely related to soil characteristics, which has an upset triangle shape where the large dynamic stress is at the top. Pile compared with soil shares most dynamic stress. Pile structure expands the depth of the dynamic response of subgrade has limited effect on dynamic response. These results can provide subgrade. and improves the stress of subgrade soil, and the speed of train scientific basis for pile-slab structure roadbed used on soil
文摘In this paper, a model order reduction strategy is adopted for the static and dynamic behaviour simulation of a high-speed tracked vehicle. The total number of degree of freedom of the structure is condensed through a selection of interface degrees of freedom and significant global mode shapes, for an approximated description of vehicle dynamic behaviour. The methodology is implemented in a customised open-source software to reduce the computational efforts. The modelled tracked vehicle includes the sprung mass, the unsprung masses, connected by means of torsional bars, and all the track assemblies, composing the track chain. The proposed research activity presents a comprehensive investigation of the influence of the track chain, combined with longitudinal vehicle speed, on statics and vehicle dynamics, focusing on vertical dynamics. The vehicle response has been investigated both in frequency and time domain. In this last case road-wheel displacements are assumed as inputs for the model, under different working conditions, hence considering several road profiles with different amplitudes and characteristic excitation frequencies. Simulation results have proven a high fidelity in model order reduction approach and a significant contribution of the track chain in the global dynamic behaviour of the tracked vehicle.
基金supported by the National Natural Science Foundation of China(62273354,61673387,61833016).
文摘As a dynamic projection to latent structures(PLS)method with a good output prediction ability,dynamic inner PLS(DiPLS)is widely used in the prediction of key performance indi-cators.However,due to the oblique decomposition of the input space by DiPLS,there are false alarms in the actual industrial process during fault detection.To address the above problems,a dynamic modeling method based on autoregressive-dynamic inner total PLS(AR-DiTPLS)is proposed.The method first uses the regression relation matrix to decompose the input space orthogonally,which reduces useless information for the predic-tion output in the quality-related dynamic subspace.Then,a vector autoregressive model(VAR)is constructed for the predic-tion score to separate dynamic information and static informa-tion.Based on the VAR model,appropriate statistical indicators are further constructed for online monitoring,which reduces the occurrence of false alarms.The effectiveness of the method is verified by a Tennessee-Eastman industrial simulation process and a three-phase flow system.
文摘The electric transmission system congfiguration-2 is one of the main electric drives for tracked vehicles. The geometrical model for the power-train cabin is established and the preliminary design for its cooling system is implemented. The mathematic model is established for thermal current field computation, simulation and analysis in the powertrain cabin. The three-dimensional structure of the powertrain cabin is optimized. The validity of the cooling system design is proved. The foundation for optimizing the whole electric transmission system configuration is laid.
基金Projects(50708072,51378385)supported by the National Natural Science Foundation of China
文摘The AERORail, a new aerial transport platform, was chosen as the object of this work. Following a review of the literature on static behaviors, model tests on the basic dynamic mechanical characteristics were conducted. A series of 90 tests were completed with different factors, including tension force, vehicle load and vehicle speed. With regard to the proper tension and vehicle load, at a certain speed range, the tension increments of the rail's cable were proved relatively small. It can be assumed that the change of tension is small and can be reasonably ignored when the tension of an entire span is under a dynamic load. When the tension reaches a certain range, the calculation of the cable track structure using classical cable theory is acceptable. The tests prove that the average maximum dynamic amplification factor of the deflection is small, generally no more than 1.2. However, when the vehicle speed reaches a certain value, the amplified factor will reach 2.0. If the moving loads increase, the dynamic amplification factor of dynamic deflection will also increase. The tension will change the rigidity of the structure and the vibration frequency; furthermore, the resonance speed will change at a certain tension. The vibration is noticeable when vehicles pass through at the resonance speed, and this negative impact on driving comfort requires the right velocity to avoid the resonance. The results demonstrate that more design details are required for the AERORail structure.
基金the National Defense Science and Technology Research Projects of China (51421060505DZ0155)the National Science Foundation of Shaanxi Province of China (2005A009)
文摘The dynamic characteristic analysis model of antenna structures is built,in which the structural physical parameters and geometrical dimensions are all considered as unascertained variables.And a structure dynamic characteristic analysis method based on the unascertained factor method is given.The computational expression of structural characteristic is developed by the mathematics expression of unascertained factor and the principles of unascertained rational numbers arithmetic.An example is given,in which the possible values and confidence degrees of the unascertained structure characteristics are obtained.The calculated results show that the method is feasible and effective.
文摘The functions and system structure of DSA 1 Type direct shear apparatus were described, which is noted for its various functions, advanced techniques of multi desciplines. The apparatus adopted advanced measuring system and has high accuracy of testing data. It provide a new technical measure for the study of dynamic characteristics of bulk solid.
文摘The northern Tibet plateau is the core of generalized Qinghai—Tibet plateau. The main part of Qiangtang—Changdu massif, which is 45×10 4km 2 and more than 5000m in altitude, conforms to the northern Tibet plateau in area.1 The shape features and boundary conditions of Qiangtang—Changdu massif\;(1) Qiangtang—Changdu massif shows huge flat\|lying “S” area In MSS7 mosaic image, Qiangtang—Changdu massif extends in west and east, and appears a long\|elliptic huge block composed of feathered and dendritic textures.. Noticeably, there are two similar texture “tails" in the west and east ends of the massif. The western tail turns and constringes to the north, and eastern tail to the south. Thereby, the massif shows huge “S" area. According to the regional analysis, the eastern tail locates between Shaluli Mt.\|Taniantaweng Mt. and Mujiang River, and western part through Bangong\|Co connects with Pamirs along Karakoram Mt. In regional tectonics, the massif locates between Lazhulong\|Xijinwulan\|Co\|Jinshajiang River and Bangong\|Co\|Dongqiao\|Nujiang River fault belts.