Multiple complex networks, each with different properties and mutually fused, have the problems that the evolving process is time varying and non-equilibrium, network structures are layered and interlacing, and evolvi...Multiple complex networks, each with different properties and mutually fused, have the problems that the evolving process is time varying and non-equilibrium, network structures are layered and interlacing, and evolving characteristics are difficult to be measured. On that account, a dynamic evolving model of complex network with fusion nodes and overlap edges(CNFNOEs) is proposed. Firstly, we define some related concepts of CNFNOEs, and analyze the conversion process of fusion relationship and hierarchy relationship. According to the property difference of various nodes and edges, fusion nodes and overlap edges are subsequently split, and then the CNFNOEs is transformed to interlacing layered complex networks(ILCN). Secondly,the node degree saturation and attraction factors are defined. On that basis, the evolution algorithm and the local world evolution model for ILCN are put forward. Moreover, four typical situations of nodes evolution are discussed, and the degree distribution law during evolution is analyzed by means of the mean field method.Numerical simulation results show that nodes unreached degree saturation follow the exponential distribution with an error of no more than 6%; nodes reached degree saturation follow the distribution of their connection capacities with an error of no more than 3%; network weaving coefficients have a positive correlation with the highest probability of new node and initial number of connected edges. The results have verified the feasibility and effectiveness of the model, which provides a new idea and method for exploring CNFNOE's evolving process and law. Also, the model has good application prospects in structure and dynamics research of transportation network, communication network, social contact network,etc.展开更多
针对传统快速随机搜索树^(*)(rapidly-exploring random tree^(*),RRT^(*))算法收敛速率较慢,且不适用于动态场景等问题,提出一种基于目标点偏置和冗余节点删除的改进RRT*算法,用于解决移动机器人快速找到无碰撞最优路径的问题。此算法...针对传统快速随机搜索树^(*)(rapidly-exploring random tree^(*),RRT^(*))算法收敛速率较慢,且不适用于动态场景等问题,提出一种基于目标点偏置和冗余节点删除的改进RRT*算法,用于解决移动机器人快速找到无碰撞最优路径的问题。此算法在RRT^(*)算法基础上,首先对采样点进行优化处理,保证路径最优的同时减少搜寻时间;其次引入路径节点最大值概念,删除扩展树冗余节点以提高算法效率;最后结合动态窗口(dynamic window approaches,DWA)算法提高路径的安全性和平滑性,实现对动态障碍物的避障。通过3种不同地图下的仿真验证,改进算法能有效提升路径质量,且大幅降低运行时间。展开更多
为感知航班客舱保障过程各节点的动态演化机理,提出一种多马尔可夫链协同(synergy of multi-Markov chains, SMMC)的航班客舱保障过程预测方法。根据航班客舱保障的实际流程及相互约束关系,构建一种客舱保障过程节点协同的马尔可夫模型...为感知航班客舱保障过程各节点的动态演化机理,提出一种多马尔可夫链协同(synergy of multi-Markov chains, SMMC)的航班客舱保障过程预测方法。根据航班客舱保障的实际流程及相互约束关系,构建一种客舱保障过程节点协同的马尔可夫模型;基于历史数据作为样本并改进DBSCAN(density-based spatial clustering of applications with noise)聚类算法,设计面向客舱保障过程的DBSCAN-SMMC预测方法。选取国内某大型机场航班运行保障过程的实际运行数据开展仿真验证。研究结果表明,所提方法实现了各节点发生时刻的动态精准预测,其平均绝对误差的均值为0.606 min,均方根误差的均值为1.133 min,与其它方法相比平均绝对百分误差最少降低2%,拟合优度最大提升0.14,能够为机场运行精细化管理提供决策依据。展开更多
基金supported by the National Natural Science Foundation of China(615730176140149961174162)
文摘Multiple complex networks, each with different properties and mutually fused, have the problems that the evolving process is time varying and non-equilibrium, network structures are layered and interlacing, and evolving characteristics are difficult to be measured. On that account, a dynamic evolving model of complex network with fusion nodes and overlap edges(CNFNOEs) is proposed. Firstly, we define some related concepts of CNFNOEs, and analyze the conversion process of fusion relationship and hierarchy relationship. According to the property difference of various nodes and edges, fusion nodes and overlap edges are subsequently split, and then the CNFNOEs is transformed to interlacing layered complex networks(ILCN). Secondly,the node degree saturation and attraction factors are defined. On that basis, the evolution algorithm and the local world evolution model for ILCN are put forward. Moreover, four typical situations of nodes evolution are discussed, and the degree distribution law during evolution is analyzed by means of the mean field method.Numerical simulation results show that nodes unreached degree saturation follow the exponential distribution with an error of no more than 6%; nodes reached degree saturation follow the distribution of their connection capacities with an error of no more than 3%; network weaving coefficients have a positive correlation with the highest probability of new node and initial number of connected edges. The results have verified the feasibility and effectiveness of the model, which provides a new idea and method for exploring CNFNOE's evolving process and law. Also, the model has good application prospects in structure and dynamics research of transportation network, communication network, social contact network,etc.
文摘针对传统快速随机搜索树^(*)(rapidly-exploring random tree^(*),RRT^(*))算法收敛速率较慢,且不适用于动态场景等问题,提出一种基于目标点偏置和冗余节点删除的改进RRT*算法,用于解决移动机器人快速找到无碰撞最优路径的问题。此算法在RRT^(*)算法基础上,首先对采样点进行优化处理,保证路径最优的同时减少搜寻时间;其次引入路径节点最大值概念,删除扩展树冗余节点以提高算法效率;最后结合动态窗口(dynamic window approaches,DWA)算法提高路径的安全性和平滑性,实现对动态障碍物的避障。通过3种不同地图下的仿真验证,改进算法能有效提升路径质量,且大幅降低运行时间。
文摘为感知航班客舱保障过程各节点的动态演化机理,提出一种多马尔可夫链协同(synergy of multi-Markov chains, SMMC)的航班客舱保障过程预测方法。根据航班客舱保障的实际流程及相互约束关系,构建一种客舱保障过程节点协同的马尔可夫模型;基于历史数据作为样本并改进DBSCAN(density-based spatial clustering of applications with noise)聚类算法,设计面向客舱保障过程的DBSCAN-SMMC预测方法。选取国内某大型机场航班运行保障过程的实际运行数据开展仿真验证。研究结果表明,所提方法实现了各节点发生时刻的动态精准预测,其平均绝对误差的均值为0.606 min,均方根误差的均值为1.133 min,与其它方法相比平均绝对百分误差最少降低2%,拟合优度最大提升0.14,能够为机场运行精细化管理提供决策依据。