Extended finite element method (XFEM) implementation of the interaction integral methodology for evaluating the stress intensity factors (SIF) of the mixed-mode crack problem is presented. A discontinuous function...Extended finite element method (XFEM) implementation of the interaction integral methodology for evaluating the stress intensity factors (SIF) of the mixed-mode crack problem is presented. A discontinuous function and the near-tip asymptotic function are added to the classic finite element approximation to model the crack behavior. Two-state integral by the superposition of actual and auxiliary fields is derived to calculate the SIFs. Applications of the proposed technique to the inclined centre crack plate with inclined angle from 0° to 90° and slant edge crack plate with slant angle 45°, 67.5° and 90° are presented, and comparisons are made with closed form solutions. The results show that the proposed method is convenient, accurate and computationallv efficient.展开更多
应力强度因子是预测荷载作用下结构中裂纹产生和扩展的重要参数。半解析的比例边界有限元法结合了有限元和边界元法的优势,在裂纹尖端或存在奇异应力的区域不需要局部网格细化,可以直接提取应力强度因子。在比例边界有限元法计算应力强...应力强度因子是预测荷载作用下结构中裂纹产生和扩展的重要参数。半解析的比例边界有限元法结合了有限元和边界元法的优势,在裂纹尖端或存在奇异应力的区域不需要局部网格细化,可以直接提取应力强度因子。在比例边界有限元法计算应力强度因子的框架下,引入随机参数进行蒙特卡罗模拟(Monte Carlo simulation, MCS),并提出一种新颖的基于MCS的不确定量化分析。与直接的MCS不同,采用奇异值分解构造低阶的子空间,降低系统的自由度,并使用径向基函数对子空间进行近似,通过子空间的线性组合获得新的结构响应,实现基于MCS的快速不确定量化分析。考虑不同荷载状况下,结构形状参数和材料属性参数对应力强度因子的影响,使用改进的MCS计算应力强度因子的统计特征,量化不确定参数对结构的影响。最后通过若干算例验证了该算法的准确性和有效性。展开更多
基金Projects(41172244,41072224) supported by the National Natural Science Foundation of ChinaProject(2009GGJS-037) supported by the Foundation of Youths Key Teacher by the Henan Educational Committee,China
文摘Extended finite element method (XFEM) implementation of the interaction integral methodology for evaluating the stress intensity factors (SIF) of the mixed-mode crack problem is presented. A discontinuous function and the near-tip asymptotic function are added to the classic finite element approximation to model the crack behavior. Two-state integral by the superposition of actual and auxiliary fields is derived to calculate the SIFs. Applications of the proposed technique to the inclined centre crack plate with inclined angle from 0° to 90° and slant edge crack plate with slant angle 45°, 67.5° and 90° are presented, and comparisons are made with closed form solutions. The results show that the proposed method is convenient, accurate and computationallv efficient.
文摘应力强度因子是预测荷载作用下结构中裂纹产生和扩展的重要参数。半解析的比例边界有限元法结合了有限元和边界元法的优势,在裂纹尖端或存在奇异应力的区域不需要局部网格细化,可以直接提取应力强度因子。在比例边界有限元法计算应力强度因子的框架下,引入随机参数进行蒙特卡罗模拟(Monte Carlo simulation, MCS),并提出一种新颖的基于MCS的不确定量化分析。与直接的MCS不同,采用奇异值分解构造低阶的子空间,降低系统的自由度,并使用径向基函数对子空间进行近似,通过子空间的线性组合获得新的结构响应,实现基于MCS的快速不确定量化分析。考虑不同荷载状况下,结构形状参数和材料属性参数对应力强度因子的影响,使用改进的MCS计算应力强度因子的统计特征,量化不确定参数对结构的影响。最后通过若干算例验证了该算法的准确性和有效性。