Herein,an FMS/CC composite was successfully fabricated by depositing FeMoS_(4)onto a pristine carbon fiber cloth(CC)substrate via a facile two-step hydrothermal method.The amorphous nature of the FMS/CC compos-ite end...Herein,an FMS/CC composite was successfully fabricated by depositing FeMoS_(4)onto a pristine carbon fiber cloth(CC)substrate via a facile two-step hydrothermal method.The amorphous nature of the FMS/CC compos-ite endows it with abundant catalytically active sites,thereby accelerating the reduction of I_(3)^(-).More importantly,the dye-sensitized solar cells(DSSCs)prepared by scraping it on flexible titanium mesh with low resistance had low series resistance(Rs).Electrochemical characterizations revealed that the DSSCs employing the FMS/CC counter electrode achieved a power conversion efficiency(PCE)of ca.9.51%(surpassing the ca.8.15%efficiency of the Pt counter electrode),open-circuit voltage(Voc)of ca.0.79 V,short-circuit current density(Jsc)of ca.18.31 mA·cm^(-2),and fill factor(FF)of ca.0.65.Moreover,after 100 times of cyclic voltammetry(CV)test,the CV curve remained unchanged,indicating the excellent stability of FMS/CC in the electrolyte containing I_(3)^(-)/I^(-).展开更多
Anatase Ti0_(2) nanosheet-based hierarchical spheres(HSs)with nearly 100%exposed{001}facets were synthesized via a facile solvothermal process.Using these hierarchical spheres as a scattering layer on nanocrystaline T...Anatase Ti0_(2) nanosheet-based hierarchical spheres(HSs)with nearly 100%exposed{001}facets were synthesized via a facile solvothermal process.Using these hierarchical spheres as a scattering layer on nanocrystaline TiO_(2)film,hi-layered dye-sensitized solar cells(DSSCs)have been fabricated by electrophoresis deposition method,which well preserved the fragile hierarchical structure.Owing to the superior dye adsorption and light scattering effect of HSs,an overall energy conversion efficiency of 7.38%is achieved,which is 26%higher than that of nanoparticle-based photoanode.展开更多
文摘Herein,an FMS/CC composite was successfully fabricated by depositing FeMoS_(4)onto a pristine carbon fiber cloth(CC)substrate via a facile two-step hydrothermal method.The amorphous nature of the FMS/CC compos-ite endows it with abundant catalytically active sites,thereby accelerating the reduction of I_(3)^(-).More importantly,the dye-sensitized solar cells(DSSCs)prepared by scraping it on flexible titanium mesh with low resistance had low series resistance(Rs).Electrochemical characterizations revealed that the DSSCs employing the FMS/CC counter electrode achieved a power conversion efficiency(PCE)of ca.9.51%(surpassing the ca.8.15%efficiency of the Pt counter electrode),open-circuit voltage(Voc)of ca.0.79 V,short-circuit current density(Jsc)of ca.18.31 mA·cm^(-2),and fill factor(FF)of ca.0.65.Moreover,after 100 times of cyclic voltammetry(CV)test,the CV curve remained unchanged,indicating the excellent stability of FMS/CC in the electrolyte containing I_(3)^(-)/I^(-).
文摘Anatase Ti0_(2) nanosheet-based hierarchical spheres(HSs)with nearly 100%exposed{001}facets were synthesized via a facile solvothermal process.Using these hierarchical spheres as a scattering layer on nanocrystaline TiO_(2)film,hi-layered dye-sensitized solar cells(DSSCs)have been fabricated by electrophoresis deposition method,which well preserved the fragile hierarchical structure.Owing to the superior dye adsorption and light scattering effect of HSs,an overall energy conversion efficiency of 7.38%is achieved,which is 26%higher than that of nanoparticle-based photoanode.