By virtue of a complete set of two displacement potentials,an analytical derivation of the elastostatic Green’s functions of an exponentially graded transversely isotropic substrate–coating system is presented.Three...By virtue of a complete set of two displacement potentials,an analytical derivation of the elastostatic Green’s functions of an exponentially graded transversely isotropic substrate–coating system is presented.Three-dimensional point–load and patch–load Green’s functions for stresses and displacements are given in line-integral representations.The formulation includes a complete set of transformed stress–potential and displacement–potential relations,with utilizing Fourier series and Hankel transforms.As illustrations,the present Green’s functions are degenerated to the special cases such as an exponentially graded half-space and a homogeneous two-layered half-space Green’s functions.Because of complicated integrand functions,the integrals are evaluated numerically and for numerical computation of the integrals,a robust and effective methodology is laid out which gives the necessary account of the presence of singularities of integration.Comparisons of the existing numerical solutions for homogeneous two-layered isotropic and transversely isotropic half-spaces are made to confirm the accuracy of the present solutions.Some typical numerical examples are also given to show the general features of the exponentially graded two-layered half-space Green’s functions that the effect of degree of variation of material properties will be recognized.展开更多
By using integral transform methods, the Green(s functions of horizontal harmonic force applied at the interior of the saturated half-space soil are obtained in the paper. The general solutions of the Biot dynamic equ...By using integral transform methods, the Green(s functions of horizontal harmonic force applied at the interior of the saturated half-space soil are obtained in the paper. The general solutions of the Biot dynamic equations in frequency domain are established through the use of Hankel integral transforms technique. Utilizing the above- mentioned general solutions, and the boundary conditions of the surface of the half-space and the continuous conditions at the plane of the horizontal force, the solutions of the boundary value problem can be determined. By the numerical inverse Hankel transforms method, the Green(s functions of the harmonic horizontal force are obtainable. The degenerate case of the results deduced from this paper agrees well with the known results. Two numerical examples are given in the paper.展开更多
In order to simplify the boundary conditions of pavement temperature field,the "Environment-Surface" system which considered the natural environment and pavement surface was established.Based on this system,...In order to simplify the boundary conditions of pavement temperature field,the "Environment-Surface" system which considered the natural environment and pavement surface was established.Based on this system,the partial differential equations of the one-dimensional heat conduction in the pavement were established on the basis of the heat transfer theory.Furthermore,the function forms of the initial and boundary conditions of the equations were created through the field experiments.The general solution of the pavement one-dimensional heat conduction partial differential equations was acquired by using Green's function,and the explicit expression of pavement temperature field under specific constraint conditions was derived.For the purpose of analysis,the pavement temperatures in different seasons were calculated using the explicit expression of pavement temperature field,and the calculation accuracy was analyzed through the comparison between measured and calculated values.Then,the relationship between fitting accuracy and calculation accuracy of pavement temperatures was analyzed.The analysis results show that: the usage of "Environment-Surface" system simplifies the calculation of pavement temperature field; the relative error between calculated and measured values is generally less than 7% and is seldom influenced by seasons; there is a positive correlation between the calculation accuracy and the fitting accuracy of pavement surface temperature; high fitting accuracy would result in less error of pavement temperature prediction.展开更多
The flow behavior in porous media with threshold pressure gradient(TPG) is more complex than Darcy flow and the equations of motion, and outer boundary and inner boundary with TPG are also different from Darcy flow fo...The flow behavior in porous media with threshold pressure gradient(TPG) is more complex than Darcy flow and the equations of motion, and outer boundary and inner boundary with TPG are also different from Darcy flow for unsteady flow of a producing well in a reservoir. An analytic method to solve this kind of problem is in a need of reestablishment. The classical method of Green's function and Newman product principle in a new way are used to solve the unsteady state flow problems of various shapes of well and reservoir while considering the TPG. Four Green's functions of point, line, band and circle while considering the TPG are achieved. Then, two well models of vertical well and horizontal well are built and simultaneously the function to calculate the moving boundary of each well model is provided. The results show that when considering TPG the pressure field is much different, which has a sudden pressure change, with a moving boundary in it. And the moving boundary of each well model increases with time but slows down rapidly, especially when the TGP is large.展开更多
文摘By virtue of a complete set of two displacement potentials,an analytical derivation of the elastostatic Green’s functions of an exponentially graded transversely isotropic substrate–coating system is presented.Three-dimensional point–load and patch–load Green’s functions for stresses and displacements are given in line-integral representations.The formulation includes a complete set of transformed stress–potential and displacement–potential relations,with utilizing Fourier series and Hankel transforms.As illustrations,the present Green’s functions are degenerated to the special cases such as an exponentially graded half-space and a homogeneous two-layered half-space Green’s functions.Because of complicated integrand functions,the integrals are evaluated numerically and for numerical computation of the integrals,a robust and effective methodology is laid out which gives the necessary account of the presence of singularities of integration.Comparisons of the existing numerical solutions for homogeneous two-layered isotropic and transversely isotropic half-spaces are made to confirm the accuracy of the present solutions.Some typical numerical examples are also given to show the general features of the exponentially graded two-layered half-space Green’s functions that the effect of degree of variation of material properties will be recognized.
基金State Natural Science Foundation (59879012) and Doctoral Foundation from State Education Commission (98024832).
文摘By using integral transform methods, the Green(s functions of horizontal harmonic force applied at the interior of the saturated half-space soil are obtained in the paper. The general solutions of the Biot dynamic equations in frequency domain are established through the use of Hankel integral transforms technique. Utilizing the above- mentioned general solutions, and the boundary conditions of the surface of the half-space and the continuous conditions at the plane of the horizontal force, the solutions of the boundary value problem can be determined. By the numerical inverse Hankel transforms method, the Green(s functions of the harmonic horizontal force are obtainable. The degenerate case of the results deduced from this paper agrees well with the known results. Two numerical examples are given in the paper.
基金Projects(2012zzts019,2012QNZT048)supported by the Fundamental Research Funds for the Central Universities of Central South University,ChinaProject(201306370121)supported by the State Scholarship Fund of China+3 种基金Project(JT20090898002)supported by Traffic Technology Fund of Hainan Province,ChinaProject(2012M521563)supported by the China Postdoctoral Science FoundationProject(51248006)supported by The National Natural Science Foundation of ChinaProject(511114)supported by the Natural Science Foundation of Hainan Province,China
文摘In order to simplify the boundary conditions of pavement temperature field,the "Environment-Surface" system which considered the natural environment and pavement surface was established.Based on this system,the partial differential equations of the one-dimensional heat conduction in the pavement were established on the basis of the heat transfer theory.Furthermore,the function forms of the initial and boundary conditions of the equations were created through the field experiments.The general solution of the pavement one-dimensional heat conduction partial differential equations was acquired by using Green's function,and the explicit expression of pavement temperature field under specific constraint conditions was derived.For the purpose of analysis,the pavement temperatures in different seasons were calculated using the explicit expression of pavement temperature field,and the calculation accuracy was analyzed through the comparison between measured and calculated values.Then,the relationship between fitting accuracy and calculation accuracy of pavement temperatures was analyzed.The analysis results show that: the usage of "Environment-Surface" system simplifies the calculation of pavement temperature field; the relative error between calculated and measured values is generally less than 7% and is seldom influenced by seasons; there is a positive correlation between the calculation accuracy and the fitting accuracy of pavement surface temperature; high fitting accuracy would result in less error of pavement temperature prediction.
基金Project(51304220) supported by the National Natural Science Foundation of ChinaProject(3144033) supported by the Beijing Natural Science Foundation,ChinaProject(20130007120014) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘The flow behavior in porous media with threshold pressure gradient(TPG) is more complex than Darcy flow and the equations of motion, and outer boundary and inner boundary with TPG are also different from Darcy flow for unsteady flow of a producing well in a reservoir. An analytic method to solve this kind of problem is in a need of reestablishment. The classical method of Green's function and Newman product principle in a new way are used to solve the unsteady state flow problems of various shapes of well and reservoir while considering the TPG. Four Green's functions of point, line, band and circle while considering the TPG are achieved. Then, two well models of vertical well and horizontal well are built and simultaneously the function to calculate the moving boundary of each well model is provided. The results show that when considering TPG the pressure field is much different, which has a sudden pressure change, with a moving boundary in it. And the moving boundary of each well model increases with time but slows down rapidly, especially when the TGP is large.