The aim of this paper is to investigate the effect of nitrite intercalated Mg-Al layered double hydroxides(Mg-Al LDH-NO_(2))on mortar durability under the coexisting environment of Cl−and SO_(4)^(2-).Cl−and SO_(4)^(2-...The aim of this paper is to investigate the effect of nitrite intercalated Mg-Al layered double hydroxides(Mg-Al LDH-NO_(2))on mortar durability under the coexisting environment of Cl−and SO_(4)^(2-).Cl−and SO_(4)^(2-) binding properties of Mg-Al LDH-NO_(2) in simulated concrete pore solutions,Cl−and SO_(4)^(2-) diffusion properties of mortars with Mg-Al LDHNO 2 were examined.The steel corrosion and resistance of mortar against SO_(4)^(2-) attack were also evaluated.The results indicate that Mg-Al LDH-NO_(2) can effectively adsorb the Cl−and SO_(4)^(2-) in simulated concrete pore solution,and inhibit the diffusion of Cl−and SO_(4)^(2-) into cement mortars.The presence of SO_(4)^(2-) can greatly affect the uptake amount of Cl−,and there is a coupled effect of Cl−and SO_(4)^(2-) on their penetration into mortar specimens.In addition,Mg-Al LDH-NO_(2) can greatly upgrade the resistance of mortars against SO_(4)^(2-) attack and well prevent the steel from corrosion.However,Cl−will aggravate the SO_(4)^(2-) attack and SO_(4)^(2-) can initially decrease and then increase the steel corrosion.展开更多
To evaluate the effect of treating long cracks with the impact crack-closure retrofit(ICR)technique,three rib-to-deck welded specimens with a crack length of about 100 mm were tested.The metallographic structure,crack...To evaluate the effect of treating long cracks with the impact crack-closure retrofit(ICR)technique,three rib-to-deck welded specimens with a crack length of about 100 mm were tested.The metallographic structure,crack section,crack propagation life,and stress variation were analyzed.Finite-element models were also developed,and some optimal values of certain parameters are suggested according to the simulated results.The results show that new crack sources are generated on both sides of the ICR-treated region because of the stress distribution.The fatigue lives of cracked specimens with long cracks are significantly improved by the technique.Considerable residual compressive stress is also induced,and so it is suggested that the optimal impact angle to be applied to real bridges should be 70°.The stress at the weld root is distributed uniformly with the crack closed,and the optimal crack-closure depth is 4 mm.To evaluate the effect of different crack-closure depths in tests,it is recommended that a hot-spot stress method which is extrapolated by three reference points should be adopted.展开更多
为实现工业固废在道路与铁道路基工程中的高值化利用,助力双碳目标在交通运输工程领域中的达成,采用钢渣、矿渣与2种脱硫产物(DP-1、DP-2)等工业固废制备再生胶凝固化剂。基于响应面法考察不同工业固废的交互作用并得到其最优组配。采...为实现工业固废在道路与铁道路基工程中的高值化利用,助力双碳目标在交通运输工程领域中的达成,采用钢渣、矿渣与2种脱硫产物(DP-1、DP-2)等工业固废制备再生胶凝固化剂。基于响应面法考察不同工业固废的交互作用并得到其最优组配。采用最优组配下的固化剂对粉土进行改良固化,并表征本研究固化粉土微观结构。与水泥固化粉土作对比,探究了固化剂掺量、养护龄期对固化粉土力学性能和耐久性的影响规律,并分析2种固化粉土的矿物成分,探究再生胶凝固化剂的粉土固化机理。研究结果表明:7 d无侧限抗压强度(p_(usc))响应面模型经残差正态概率分布检验,模型可靠度较高。钢渣与矿渣、钢渣与DP-2交互作用对7 d p_(usc)值的影响极其显著,再生胶凝固化剂最优配比(%)为钢渣∶矿渣∶DP-1∶DP-2=52.1∶19.9∶19.5∶8.5。研究可知,固化粉土具有良好的力学性能和耐久性,在养护后期(28 d)与水泥固化粉土p_(usc)值、加州承载比值、水稳性能系数值、冻融循环系数值分别相差1.9%、0.5%、1.0%、2.3%。再生胶凝固化剂组分在碱性环境中发挥协同作用,水化产物交错生长填充了粉土颗粒之间的孔隙,从而提高了固化粉土的力学性能。同掺量的再生胶凝固化剂碳排放仅为水泥的1.66%,推荐再生胶凝固化剂路床固化工程最优掺量为6%~8%,该技术的推广应用具有重要环保和社会意义。展开更多
基金Project(51478164)supported by the National Natural Science Foundation of ChinaProject(BK20181306)supported by Natural Science Foundation of Jiangsu Province,China。
文摘The aim of this paper is to investigate the effect of nitrite intercalated Mg-Al layered double hydroxides(Mg-Al LDH-NO_(2))on mortar durability under the coexisting environment of Cl−and SO_(4)^(2-).Cl−and SO_(4)^(2-) binding properties of Mg-Al LDH-NO_(2) in simulated concrete pore solutions,Cl−and SO_(4)^(2-) diffusion properties of mortars with Mg-Al LDHNO 2 were examined.The steel corrosion and resistance of mortar against SO_(4)^(2-) attack were also evaluated.The results indicate that Mg-Al LDH-NO_(2) can effectively adsorb the Cl−and SO_(4)^(2-) in simulated concrete pore solution,and inhibit the diffusion of Cl−and SO_(4)^(2-) into cement mortars.The presence of SO_(4)^(2-) can greatly affect the uptake amount of Cl−,and there is a coupled effect of Cl−and SO_(4)^(2-) on their penetration into mortar specimens.In addition,Mg-Al LDH-NO_(2) can greatly upgrade the resistance of mortars against SO_(4)^(2-) attack and well prevent the steel from corrosion.However,Cl−will aggravate the SO_(4)^(2-) attack and SO_(4)^(2-) can initially decrease and then increase the steel corrosion.
基金Projects(51478163,51678216)supported by the National Natural Science Foundation of ChinaProject(2017Y09)supported by the Transport Science Research Project of Jiangsu Province,China
文摘To evaluate the effect of treating long cracks with the impact crack-closure retrofit(ICR)technique,three rib-to-deck welded specimens with a crack length of about 100 mm were tested.The metallographic structure,crack section,crack propagation life,and stress variation were analyzed.Finite-element models were also developed,and some optimal values of certain parameters are suggested according to the simulated results.The results show that new crack sources are generated on both sides of the ICR-treated region because of the stress distribution.The fatigue lives of cracked specimens with long cracks are significantly improved by the technique.Considerable residual compressive stress is also induced,and so it is suggested that the optimal impact angle to be applied to real bridges should be 70°.The stress at the weld root is distributed uniformly with the crack closed,and the optimal crack-closure depth is 4 mm.To evaluate the effect of different crack-closure depths in tests,it is recommended that a hot-spot stress method which is extrapolated by three reference points should be adopted.
文摘为实现工业固废在道路与铁道路基工程中的高值化利用,助力双碳目标在交通运输工程领域中的达成,采用钢渣、矿渣与2种脱硫产物(DP-1、DP-2)等工业固废制备再生胶凝固化剂。基于响应面法考察不同工业固废的交互作用并得到其最优组配。采用最优组配下的固化剂对粉土进行改良固化,并表征本研究固化粉土微观结构。与水泥固化粉土作对比,探究了固化剂掺量、养护龄期对固化粉土力学性能和耐久性的影响规律,并分析2种固化粉土的矿物成分,探究再生胶凝固化剂的粉土固化机理。研究结果表明:7 d无侧限抗压强度(p_(usc))响应面模型经残差正态概率分布检验,模型可靠度较高。钢渣与矿渣、钢渣与DP-2交互作用对7 d p_(usc)值的影响极其显著,再生胶凝固化剂最优配比(%)为钢渣∶矿渣∶DP-1∶DP-2=52.1∶19.9∶19.5∶8.5。研究可知,固化粉土具有良好的力学性能和耐久性,在养护后期(28 d)与水泥固化粉土p_(usc)值、加州承载比值、水稳性能系数值、冻融循环系数值分别相差1.9%、0.5%、1.0%、2.3%。再生胶凝固化剂组分在碱性环境中发挥协同作用,水化产物交错生长填充了粉土颗粒之间的孔隙,从而提高了固化粉土的力学性能。同掺量的再生胶凝固化剂碳排放仅为水泥的1.66%,推荐再生胶凝固化剂路床固化工程最优掺量为6%~8%,该技术的推广应用具有重要环保和社会意义。