To ensure safe drilling with narrow pressure margins in deepwater, a new deepwater dual-gradient drilling method based on downhole separation was designed. A laboratory experiment was conducted to verify the effective...To ensure safe drilling with narrow pressure margins in deepwater, a new deepwater dual-gradient drilling method based on downhole separation was designed. A laboratory experiment was conducted to verify the effectiveness of downhole separation and the feasibility of realizing dual-gradient in wellbore. The calculation of dynamic wellbore pressure during drilling was conducted. Then, an optimization model for drilling parameters was established for this drilling method, including separator position, separation efficiency, injection volume fraction, density of drilling fluid, wellhead back pressure and displacement. The optimization of drilling parameters under different control parameters and different narrow safe pressure margins is analyzed by case study. The optimization results indicate that the wellbore pressure profile can be optimized to adapt to the narrow pressure margins and achieve greater drilling depth. By using the optimization model, a smaller bottom-hole pressure difference can be obtained, which can increase the rate of penetration(ROP) and protect reservoirs. The dynamic wellbore pressure has been kept within safe pressure margins during optimization process, effectively avoiding the complicated underground situations caused by improper wellbore pressure.展开更多
In-situ pressure-preserved coring(IPP-Coring)is considered to be the most reliable and efficient method for the identification of the scale of oil and gas resources.During IPP-Coring,because the rotation behavior of t...In-situ pressure-preserved coring(IPP-Coring)is considered to be the most reliable and efficient method for the identification of the scale of oil and gas resources.During IPP-Coring,because the rotation behavior of the pressure controller valve cover in different medium environments is unclear,interference between the valve cover and inner pipe may occur and negatively affect the IPP-Coring success rate.To address this issue,we conducted a series of indoor experiments employing a high-speed camera to gain greater insights into the valve cover rotation behavior in different medium environments,e.g.,air,water,and simulated drilling fluids.The results indicated that the variation in the valve cover rotation angle in the air and fluid environments can be described by a one-phase exponential decay function with a constant time parameter and by biphasic dose response function,respectively.The rotation behavior in the fluid environments exhibited distinct elastic and gravitational acceleration zones.In the fluid environments,the density clearly impacted the valve cover closing time and rotation behavior,whereas the effect of viscosity was very slight.This can be attributed to the negligible influence of the fluid viscosity on the drag coefficient found in this study;meanwhile,the density can increase the buoyancy and the time period during which the valve cover experienced a high drag coefficient.Considering these results,control schemes for the valve cover rotation behavior during IPP-Coring were proposed for different layers and geological conditions in which the different drilling fluids should be used,e.g.,the use of a high-density valve cover in high-pore pressure layers.展开更多
基金Supported by the Key Program of National Natural Science Foundation of China(51734010)
文摘To ensure safe drilling with narrow pressure margins in deepwater, a new deepwater dual-gradient drilling method based on downhole separation was designed. A laboratory experiment was conducted to verify the effectiveness of downhole separation and the feasibility of realizing dual-gradient in wellbore. The calculation of dynamic wellbore pressure during drilling was conducted. Then, an optimization model for drilling parameters was established for this drilling method, including separator position, separation efficiency, injection volume fraction, density of drilling fluid, wellhead back pressure and displacement. The optimization of drilling parameters under different control parameters and different narrow safe pressure margins is analyzed by case study. The optimization results indicate that the wellbore pressure profile can be optimized to adapt to the narrow pressure margins and achieve greater drilling depth. By using the optimization model, a smaller bottom-hole pressure difference can be obtained, which can increase the rate of penetration(ROP) and protect reservoirs. The dynamic wellbore pressure has been kept within safe pressure margins during optimization process, effectively avoiding the complicated underground situations caused by improper wellbore pressure.
基金The authors are grateful for the financial support from the National Natural Science Foundation of China(No.51827901&No.52274133)the Program for Guangdong Introducing Innovative and Enterpreneurial Teams(No.2019ZT08G315)the Shenzhen National Science Fund for Distinguished Young Scholars(RCJC20210706091948015).
文摘In-situ pressure-preserved coring(IPP-Coring)is considered to be the most reliable and efficient method for the identification of the scale of oil and gas resources.During IPP-Coring,because the rotation behavior of the pressure controller valve cover in different medium environments is unclear,interference between the valve cover and inner pipe may occur and negatively affect the IPP-Coring success rate.To address this issue,we conducted a series of indoor experiments employing a high-speed camera to gain greater insights into the valve cover rotation behavior in different medium environments,e.g.,air,water,and simulated drilling fluids.The results indicated that the variation in the valve cover rotation angle in the air and fluid environments can be described by a one-phase exponential decay function with a constant time parameter and by biphasic dose response function,respectively.The rotation behavior in the fluid environments exhibited distinct elastic and gravitational acceleration zones.In the fluid environments,the density clearly impacted the valve cover closing time and rotation behavior,whereas the effect of viscosity was very slight.This can be attributed to the negligible influence of the fluid viscosity on the drag coefficient found in this study;meanwhile,the density can increase the buoyancy and the time period during which the valve cover experienced a high drag coefficient.Considering these results,control schemes for the valve cover rotation behavior during IPP-Coring were proposed for different layers and geological conditions in which the different drilling fluids should be used,e.g.,the use of a high-density valve cover in high-pore pressure layers.