A dual-frequency(105/140 GHz)MW-level continuous-wave gyrotron was developed for fusion application at Institute of Applied Electronics,China Academy of Engineering Physics.This gyrotron employs a cylindrical cavity w...A dual-frequency(105/140 GHz)MW-level continuous-wave gyrotron was developed for fusion application at Institute of Applied Electronics,China Academy of Engineering Physics.This gyrotron employs a cylindrical cavity working in the TE18,7 mode at 105 GHz and the TE24,9 mode at 140 GHz.A triode magnetron injection gun and a built-in quasi-optical mode converter were designed to operate at these two frequencies.For the proof-test phase,the gyrotron was equipped with a single-disk boron nitride window to achieve radio frequency output with a power of~500 k W for a short-pulse duration.In the preliminary short-pulse proof-test in the first quarter of2021,the dual-frequency gyrotron achieved output powers of 300 k W at 105 GHz and 540 k W at140 GHz,respectively,under 5 Hz 1 ms continuous pulse-burst operations.Power upgrade and pulse-width extension were hampered by the limitation of the high-voltage power supply and output window.This gyrotron design was preliminarily validated.展开更多
Based on the fundamental ideas concerning microwave attenuation in plasma, we obtain a new expression of transmission attenuation of microwaves as a function of the incident wave frequency. And with reasonable hypothe...Based on the fundamental ideas concerning microwave attenuation in plasma, we obtain a new expression of transmission attenuation of microwaves as a function of the incident wave frequency. And with reasonable hypothesis, analytical forms of the electron density and the electron-neutral collision frequency are derived from the equations of the transmission attenuation of microwaves at two near frequencies. This method gives an effective and easy approach to diagnose the unmagnetized plasma.展开更多
The optical feedback characteristics in a Zeeman-birefringence dual-frequency laser are studied during the laser cavity tuning in three different kinds of optical feedback conditions: (i) only //-light is fed back;...The optical feedback characteristics in a Zeeman-birefringence dual-frequency laser are studied during the laser cavity tuning in three different kinds of optical feedback conditions: (i) only //-light is fed back; (ii) only ⊥-light is fed back; (iii) both lights are fed back. A compact displacement sensor is designed using the experimental result that there is a nearly 90 degrees phase delay between the two lights' cosine optical feedback signals when both lights are fed back into the laser cavity. The priority order that the two lights' intensity curves appear can be used for direction discrimination. The resolution of the displacement sensor is at least 79 rim, and the sensor can discriminate the target's moving direction easily.展开更多
The difference-frequency (DF) ultrasound generated by using parametric effect promises to improve detection depth owing to its low attenuation, which is beneficial for deep tissue imaging. With ultrasound contrast a...The difference-frequency (DF) ultrasound generated by using parametric effect promises to improve detection depth owing to its low attenuation, which is beneficial for deep tissue imaging. With ultrasound contrast agents infusion, the harmonic components scattered from the microbubbles, including DF, can be generated due to the nonlinear vibration. A theoretical study on the DF generation from microbubbles under the dual-frequency excitation is proposed in formula based on the solution of the RPNNP equation. The optimisation of the DF generation is discussed associated with the applied acoustic pressure, frequency, and the microbubble size. Experiments are performed to validate the theoretical predictions by using a dual-frequency signal to excite microbubbles. Both the numerical and experimental results demonstrate that the optimised DF ultrasound can be achieved as the difference frequency is close to the resonance frequency of the microbubble and improve the contrast-to-tissue ratio in imaging.展开更多
Effect of low-frequency power on F, CF2 relative density and F/CF2 ratio, in C2F6, C4F8 and CHF3 dual-frequency capacitively couple discharge driven by the power of 13.56 MHz/2 MHz, was investigated by using optical e...Effect of low-frequency power on F, CF2 relative density and F/CF2 ratio, in C2F6, C4F8 and CHF3 dual-frequency capacitively couple discharge driven by the power of 13.56 MHz/2 MHz, was investigated by using optical emission spectroscopy. High F, CF2 relative density and high F/CF2 ratio were obtained in a CHF3 plasma. But for C2F6 and C4Fs plasmas, the F, CF2 relative density and F/CF2 ratio all decreased significantly due to the difference in both reactive paths and reactive energy. The increase of LF power caused simultaneous increase of F and CF2 radical relative densities in C4Fs and CHF3 plasmas, but led to increase of F with the decrease in CF2 relative densities in C2F6 plasma due to the increase of lower energy electrons and the decrease of higher energy electrons in electron energy distribution function (EEDF).展开更多
The conventional double-probe technique was improved with a combination of selfpowering and radio-frequency(RF) choking.RF perturbations in dual-frequency capacitively coupled discharge were effectively eliminated,a...The conventional double-probe technique was improved with a combination of selfpowering and radio-frequency(RF) choking.RF perturbations in dual-frequency capacitively coupled discharge were effectively eliminated,as judged by the disappearance of self-bias on the probes.The improved technique was tested by spatially resolved measurements of the electron temperature and ion density in both the axial and radial directions of a dual-frequency capacitive plasma.The measured data in the axial direction were compared with simulation results,and they were excellently consistent with each other.The measured radial distributions of the ion density and electron temperature were influenced significantly by the lower frequency(LF) power.It was shown that superposition of the lower frequency to the higher frequency(HF) power shifted the maximum ion density from the radial center to the edge region,while the trend for the electron temperature profile was the opposite.The changing feature of the ion density distribution is qualitatively consistent with that of the optical emission intensity reported.展开更多
Low pressure argon dual-frequency (DF) capacitively coupled plasma (CCP) is generated by using different frequency configurations, such as 13.56/2, 27/2, 41/2, and 60/2 MHz. Characteristics of the plasma are inves...Low pressure argon dual-frequency (DF) capacitively coupled plasma (CCP) is generated by using different frequency configurations, such as 13.56/2, 27/2, 41/2, and 60/2 MHz. Characteristics of the plasma are investigated by using a floating double electrical probe and optical emission spectroscopy (OES). It is shown that in the DF-CCPs, the electron temperature Te decreases with the increase in exciting frequency, while the onset of 2 MHz induces a sudden increase in Te and the electron density increases basically with the increase in low frequency (LF) power. The intensity of 750.4 nm emission line increases with the LF power in the case of 13.56/2 MHz, while different tendencies of line intensity with the LF power appear for other configurations. The reason for this is also discussed.展开更多
Diamond-like carbon (DLC) films were prepared with CH4-Ar using a capacitively coupled plasma enhanced chemical vapor deposition (CCP-CVD) method driven by dual-frequency of 41 MHz and 13.56 MHz in combination. Du...Diamond-like carbon (DLC) films were prepared with CH4-Ar using a capacitively coupled plasma enhanced chemical vapor deposition (CCP-CVD) method driven by dual-frequency of 41 MHz and 13.56 MHz in combination. Due to a coupling via bulk plasma, the self-bias voltage depended not only on the radiofrequency (RF) power of the corresponding electrode but also on another RF power of the counter electrode. The influence of the discharge parameters on the deposition rate, optical and Raman properties of the deposited films was investigated. The optical band decreased basically with the increase in the input power of both the low frequency and high frequency. Raman measurements show that the deposited films have a maximal sp3 content with an applied negative self-bias voltage of -150 V, while high frequency power causes a continuous increase in the sp3 content. The measurement of atomic force microscope (AFM) shows that the surface of the deposited films under ion-bombardment becomes smoother than those with non-intended self-bias voltage.展开更多
The deposition of organosilicone thin films from hexamethyldisiloxane(HMDSO) by using a dual-frequency (50 kHz/33 MHz) atmospheric-pressure micro-plasma jet with an admixture of a small volume of HMDSO and Ar was ...The deposition of organosilicone thin films from hexamethyldisiloxane(HMDSO) by using a dual-frequency (50 kHz/33 MHz) atmospheric-pressure micro-plasma jet with an admixture of a small volume of HMDSO and Ar was investigated.The topography was measured by using scanning electron microscopy.The chemical bond and composition of these films were analyzed by Fourier transform infrared spectroscopy (FTIR) and x-ray photoelectron spectroscopy.The results indicated that the as-deposited film was constituted by silicon,carbon,and oxygen elements,and FTIR suggested the films are organosilicon with the organic component (-CHx) and hydroxyl functional group(-OH) connected to the Si-O-Si backbone.Thin-film hardness was recorded by an MH-5-VM Digital Micro-Hardness Tester.Radio frequency power had a strong impact on film hardness and the hardness increased with increasing power.展开更多
Dry etching of 6H silicon carbide (6H-SiC) wafers in a C4Fs/Ar dual-frequency capacitively coupled plasma (DF-CCP) was investigated. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) wer...Dry etching of 6H silicon carbide (6H-SiC) wafers in a C4Fs/Ar dual-frequency capacitively coupled plasma (DF-CCP) was investigated. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to measure the SiC surface structure and compositions, respectively. Optical emission spectroscopy (OES) was used to measure the relative concentration of F radicals in the plasma. It was found that the roughness of the etched SiC surface and the etching rate are directly related to the power of low-frequency (LF) source. At lower LF power, a smaller surface roughness and a lower etching rate are obtained due to weak bombardment of low energy ions on the SiC wafers. At higher LF power the etching rate can be efficiently increased, but the surface roughness increases too. Compared with other plasma dry etching methods, the DF-CCP can effectively inhibit CχFγ films' deposition, and reduce surface residues.展开更多
On the basis of the fluid theory and the drift-diffusion approximation, a numerical model for dual-frequency atmospheric pressure helium discharge is established, in order to investigate the effects of the high freque...On the basis of the fluid theory and the drift-diffusion approximation, a numerical model for dual-frequency atmospheric pressure helium discharge is established, in order to investigate the effects of the high frequency source (HF) on the characteristics of dual-frequency atmospheric pressure helium discharge. The numerical results showed that the electron heating rate increases with enhancing HF frequency, as well as the particles densities, electron dissipation rate, current density, net electron generation and bulk plasma region. Moreover, it is also observed that the efficient electron heating region moves when the HF frequency has been changed. The plasma parameters are not linear change with the HF frequency linearly increasing.展开更多
A one-dimensional fluid model is adopted to simulate the characteristics of N2, O2, and N2/O2 dual-frequency (DF) capacitively coupled plasmas (CCPs) under typical conditions in PECVD technologies. Not only the gr...A one-dimensional fluid model is adopted to simulate the characteristics of N2, O2, and N2/O2 dual-frequency (DF) capacitively coupled plasmas (CCPs) under typical conditions in PECVD technologies. Not only the ground, the excited states but also the vibration levels of the main species are considered. The study focuses on the influence of external parameters such as matching of the high-frequency (HF) and low-frequency (LF), HF and LF of the voltage sources, as well as discharge pressures, on physical characteristics of discharges. The results show that the decoupling of the two sources is possible by increasing the applied HF, the electron density and ion flux are determined only by the HF of the voltage source, whereas the LF has a little influence on the plasma characteristics. In addition, the matching of frequency affects the characteristics of discharges to some extent. Fhrthermore, the pressure is a main external parameter affecting the characteristics of discharges, and a small amount of oxygen in N2 plasma can efficiently increase N+ ion flux incident onto the electrode and the density of N atom.展开更多
This work investigated C2F6/O2/Ar plasma chemistry and its effect on the etching characteristics of SiCOH low-k dielectrics in 60 MHz/2 MHz dual-frequency capacitively coupled discharge. For the C2F6/Ar plasma, the in...This work investigated C2F6/O2/Ar plasma chemistry and its effect on the etching characteristics of SiCOH low-k dielectrics in 60 MHz/2 MHz dual-frequency capacitively coupled discharge. For the C2F6/Ar plasma, the increase in the low-frequency (LF) power led to an increased ion impact, prompting the dissociation of C2F6 with higher reaction energy. As a result, fluorocarbon radicals with a high F/C ratio decreased. The increase in the discharge pressure led to a decrease in the electron temperature, resulting in the decrease of C2F6 dissociation. For the C2F6/O2/Ar plasma, the increase in the LF power prompted the reaction between 02 and C2F6, resulting in the elimination of CF3 and CF2 radicals, and the production of an F-rich plasma environment. The F-rich plasma improved the etching characteristics of SiCOH low-k films, leading to a high etching rate and a smooth etched surface.展开更多
We study the surface defect gap solitons in an interface between a defect of one-dimensional dual-frequency lattices and the uniform media. Some unique properties are revealed that such lattices can broaden the region...We study the surface defect gap solitons in an interface between a defect of one-dimensional dual-frequency lattices and the uniform media. Some unique properties are revealed that such lattices can broaden the region of semi-finite gap, and the semi-finite gap exists not only in the positive and zero defects but also in the negative defect; unlike in the regular lattices, the semi-finite gap exists in the positive and zero defects but does not exist in the negative defect. In particular, stable solitons exist almost in the whole semi-finite gap for the positive and zero defects. These properties are different from other lattices with defects. In addition, it is found that the existence of surface dual-frequency lattice solitons does not need a threshold power.展开更多
The optical injection locking of semiconductor lasers to dual-frequency lasers is studied by numerical simulations.The beat-note signals can be effectively transformed to optical frequency combs due to the effective f...The optical injection locking of semiconductor lasers to dual-frequency lasers is studied by numerical simulations.The beat-note signals can be effectively transformed to optical frequency combs due to the effective four wave-mixing in the active semiconductor gain medium. The low-noise Gaussian-like pulse can be obtained by locking the relaxation oscillation and compensating the gain asymmetry. The simulations suggest that pulse trains of width below 30 ps and repetition rate in GHz frequency can be generated simply by the optical injection locking of semiconductor lasers. Since the optical injection locking can broaden the spectrum and amplify the optical power simultaneously, it can be a good initial stage for generating optical frequency combs from dual-frequency lasers by multi-stage of spectral broadening in nonlinear waveguides.展开更多
Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic h...Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic hydrogels are prepared by regulating the complexation effect,solution polarity and curing speed.Meanwhile,collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination.Subsequently,two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect.FeCo/nitrogen-doped carbon(NC)aerogel demonstrates an ultra-strong microwave absorption of−85 dB at an ultra-low loading of 5%.After reducing the time taken by atom shifting,a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained,which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles.Furthermore,both aerogels show excellent thermal insulation property,and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology.The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels,which will enable the development and application of novel and lightweight stealth coatings.展开更多
Aiming to decrease the vibration of wing induced by dual-rotor civil turbofan engines,the dynamic models of a single-degree of freedom (DOF) linear main oscillator coupled with single-DOF and two-DOF nonlinear energy ...Aiming to decrease the vibration of wing induced by dual-rotor civil turbofan engines,the dynamic models of a single-degree of freedom (DOF) linear main oscillator coupled with single-DOF and two-DOF nonlinear energy sink (NES) are established.According to the related energy criteria for the optimization of the dynamic vibration absorber,focusing on the effects of external excitation on the kinetic energy of the primary mass and total system energy,the vibration suppression effects of single-DOF,two-DOF serial and parallel NES on the main oscillator system are studied.Under the condition that the characteristic parameters of the main oscillator system and additional total mass of the vibration absorber remain unchanged,results show that the two-DOF parallel NES has the best vibration energy suppression effects,which can provide data reference for the optimal design of NES vibration suppression under dual-frequency excitation.展开更多
To realize equal power splitting at two arbitrary gigahertz-frequencies, this paper presents a new type of Wilkinson dual frequency power divider, consisting of three-section transmission lines and a series RLC(resist...To realize equal power splitting at two arbitrary gigahertz-frequencies, this paper presents a new type of Wilkinson dual frequency power divider, consisting of three-section transmission lines and a series RLC(resistor, inductor and capacitor)circuit. By equating the [ABCD] matrix of the proposed circuit to that of the quarter-wave impedance transformer, coupled with even/odd mode analyses, the design equations of the proposed network are derived. For verification, two dual-frequency power dividers with dual-band operating frequencies at 0.6 GHz and 3.0 GHz, and 3.8 GHz and 10 GHz respectively are designed and simulated. Simulation results show that the dual-band ratio of the proposed power divider can be as large as 5. Comparisons of the simulation results at X-band and S-band with different power dividers indicate that the proposed dual-band power divider performs better under the scenario of the upper operating frequency extending to X-band.展开更多
Polymer thin film deposition using an atmospheric pressure micro-plasma jet driven by dual-frequency excitations is described in this paper. The discharge process was operated with a mixture of argon (6 slm) and a s...Polymer thin film deposition using an atmospheric pressure micro-plasma jet driven by dual-frequency excitations is described in this paper. The discharge process was operated with a mixture of argon (6 slm) and a small amount of acetone (0-2100 ppm). Plasma composition was measured by optical emission spectroscopy (OES). In addition to a large number of Ar spectra lines, we observed some spectra of C, CN, CH and C2. Through changing acetone content mixed in argon, we found that the optimum discharge condition for deposition can be characterized by the maximum concentration of carbonaceous species. The deposited film was characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy. The XPS indicated that the film was mostly composed of C with trace amount of O and N elements. The FTIR suggested different carbon-containing bonds (-CHx, C=O, C=C, C-O-C) presented in the deposited film.展开更多
Nitrogen dual-frequency capacitively coupled plasmas (DF-CCPs) with different fre- quency configurations, i.e., 60/2 MHz and 60/13.56 MHz, are investigated by means of opticM emission spectroscopy (OES) and a floa...Nitrogen dual-frequency capacitively coupled plasmas (DF-CCPs) with different fre- quency configurations, i.e., 60/2 MHz and 60/13.56 MHz, are investigated by means of opticM emission spectroscopy (OES) and a floating double probe. The excited nitrogen molecule ion N+(B) is monitored by measuring the emission intensity of the (0,0) bandhead of the first neg- ative system (FNS) at 391.44 nm. It is shown that in the discharge with 60/13.56 MHz, the N+ emission intensity decreases with the increase in pressure. In the discharge with 60/2 MHz, however, an abnormal enhancement of N+ emission at higher pressure is observed when a higher power of 2 MHz is added. Variation in the ion density shows a similar dependence on the gas pressure. This indicates that in the discharge with 60/2 MHz there is a mode transition from the alpha to gamma type when a higher power of 2 MHz is added at high pressures. Combining the measurements using OES and double probe, the influence of low frequency on the discharge is investigated and the excitation route of the N+(B) state in the discharge of 60/2 MHz is also discussed.展开更多
基金supported in part by NSAF(No.U1830201)in part by the State Administration of Science,Technology and Industry for Nation Defense of China,Technology Foundation Project(No.JSJL2019212B006)+1 种基金in part by the Academy Innovation Funder(No.CX2020038)in part by the National Defense Basic Scientific Research Program(No.2018212C015)。
文摘A dual-frequency(105/140 GHz)MW-level continuous-wave gyrotron was developed for fusion application at Institute of Applied Electronics,China Academy of Engineering Physics.This gyrotron employs a cylindrical cavity working in the TE18,7 mode at 105 GHz and the TE24,9 mode at 140 GHz.A triode magnetron injection gun and a built-in quasi-optical mode converter were designed to operate at these two frequencies.For the proof-test phase,the gyrotron was equipped with a single-disk boron nitride window to achieve radio frequency output with a power of~500 k W for a short-pulse duration.In the preliminary short-pulse proof-test in the first quarter of2021,the dual-frequency gyrotron achieved output powers of 300 k W at 105 GHz and 540 k W at140 GHz,respectively,under 5 Hz 1 ms continuous pulse-burst operations.Power upgrade and pulse-width extension were hampered by the limitation of the high-voltage power supply and output window.This gyrotron design was preliminarily validated.
文摘Based on the fundamental ideas concerning microwave attenuation in plasma, we obtain a new expression of transmission attenuation of microwaves as a function of the incident wave frequency. And with reasonable hypothesis, analytical forms of the electron density and the electron-neutral collision frequency are derived from the equations of the transmission attenuation of microwaves at two near frequencies. This method gives an effective and easy approach to diagnose the unmagnetized plasma.
基金Project supported by the National Natural Science Foundation of China (Grant No 60437030).
文摘The optical feedback characteristics in a Zeeman-birefringence dual-frequency laser are studied during the laser cavity tuning in three different kinds of optical feedback conditions: (i) only //-light is fed back; (ii) only ⊥-light is fed back; (iii) both lights are fed back. A compact displacement sensor is designed using the experimental result that there is a nearly 90 degrees phase delay between the two lights' cosine optical feedback signals when both lights are fed back into the laser cavity. The priority order that the two lights' intensity curves appear can be used for direction discrimination. The resolution of the displacement sensor is at least 79 rim, and the sensor can discriminate the target's moving direction easily.
基金supported by the National Natural Science Foundation of China (Grant Nos.10974098 and 10774071)the Natural Science Foundation of Jiangsu Province,China (Grant No.BK2009407)+1 种基金the Doctoral Foundation of Ministry of Education of China (Grant No.20093207120003)the National Basic Research Program of China (Grant No.2010CB732600)
文摘The difference-frequency (DF) ultrasound generated by using parametric effect promises to improve detection depth owing to its low attenuation, which is beneficial for deep tissue imaging. With ultrasound contrast agents infusion, the harmonic components scattered from the microbubbles, including DF, can be generated due to the nonlinear vibration. A theoretical study on the DF generation from microbubbles under the dual-frequency excitation is proposed in formula based on the solution of the RPNNP equation. The optimisation of the DF generation is discussed associated with the applied acoustic pressure, frequency, and the microbubble size. Experiments are performed to validate the theoretical predictions by using a dual-frequency signal to excite microbubbles. Both the numerical and experimental results demonstrate that the optimised DF ultrasound can be achieved as the difference frequency is close to the resonance frequency of the microbubble and improve the contrast-to-tissue ratio in imaging.
基金supported by National Natural Science Foundation of China (Nos.10975105, 10575074, 10635010)
文摘Effect of low-frequency power on F, CF2 relative density and F/CF2 ratio, in C2F6, C4F8 and CHF3 dual-frequency capacitively couple discharge driven by the power of 13.56 MHz/2 MHz, was investigated by using optical emission spectroscopy. High F, CF2 relative density and high F/CF2 ratio were obtained in a CHF3 plasma. But for C2F6 and C4Fs plasmas, the F, CF2 relative density and F/CF2 ratio all decreased significantly due to the difference in both reactive paths and reactive energy. The increase of LF power caused simultaneous increase of F and CF2 radical relative densities in C4Fs and CHF3 plasmas, but led to increase of F with the decrease in CF2 relative densities in C2F6 plasma due to the increase of lower energy electrons and the decrease of higher energy electrons in electron energy distribution function (EEDF).
基金supported by National Natural Science Foundation of China(No.10635010)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20090041110026)
文摘The conventional double-probe technique was improved with a combination of selfpowering and radio-frequency(RF) choking.RF perturbations in dual-frequency capacitively coupled discharge were effectively eliminated,as judged by the disappearance of self-bias on the probes.The improved technique was tested by spatially resolved measurements of the electron temperature and ion density in both the axial and radial directions of a dual-frequency capacitive plasma.The measured data in the axial direction were compared with simulation results,and they were excellently consistent with each other.The measured radial distributions of the ion density and electron temperature were influenced significantly by the lower frequency(LF) power.It was shown that superposition of the lower frequency to the higher frequency(HF) power shifted the maximum ion density from the radial center to the edge region,while the trend for the electron temperature profile was the opposite.The changing feature of the ion density distribution is qualitatively consistent with that of the optical emission intensity reported.
基金supported by National Natural Science Foundation of China (Nos. 10635010, 10775103)
文摘Low pressure argon dual-frequency (DF) capacitively coupled plasma (CCP) is generated by using different frequency configurations, such as 13.56/2, 27/2, 41/2, and 60/2 MHz. Characteristics of the plasma are investigated by using a floating double electrical probe and optical emission spectroscopy (OES). It is shown that in the DF-CCPs, the electron temperature Te decreases with the increase in exciting frequency, while the onset of 2 MHz induces a sudden increase in Te and the electron density increases basically with the increase in low frequency (LF) power. The intensity of 750.4 nm emission line increases with the LF power in the case of 13.56/2 MHz, while different tendencies of line intensity with the LF power appear for other configurations. The reason for this is also discussed.
基金supported by National Natural Science Foundation of China (No. 10775103)
文摘Diamond-like carbon (DLC) films were prepared with CH4-Ar using a capacitively coupled plasma enhanced chemical vapor deposition (CCP-CVD) method driven by dual-frequency of 41 MHz and 13.56 MHz in combination. Due to a coupling via bulk plasma, the self-bias voltage depended not only on the radiofrequency (RF) power of the corresponding electrode but also on another RF power of the counter electrode. The influence of the discharge parameters on the deposition rate, optical and Raman properties of the deposited films was investigated. The optical band decreased basically with the increase in the input power of both the low frequency and high frequency. Raman measurements show that the deposited films have a maximal sp3 content with an applied negative self-bias voltage of -150 V, while high frequency power causes a continuous increase in the sp3 content. The measurement of atomic force microscope (AFM) shows that the surface of the deposited films under ion-bombardment becomes smoother than those with non-intended self-bias voltage.
基金supported by National Natural Science Foundation of China(Grant No.11165012,Grant No. 11665012)the Project of the Natural Science Foundation of GanSu(145RJZA159)
文摘The deposition of organosilicone thin films from hexamethyldisiloxane(HMDSO) by using a dual-frequency (50 kHz/33 MHz) atmospheric-pressure micro-plasma jet with an admixture of a small volume of HMDSO and Ar was investigated.The topography was measured by using scanning electron microscopy.The chemical bond and composition of these films were analyzed by Fourier transform infrared spectroscopy (FTIR) and x-ray photoelectron spectroscopy.The results indicated that the as-deposited film was constituted by silicon,carbon,and oxygen elements,and FTIR suggested the films are organosilicon with the organic component (-CHx) and hydroxyl functional group(-OH) connected to the Si-O-Si backbone.Thin-film hardness was recorded by an MH-5-VM Digital Micro-Hardness Tester.Radio frequency power had a strong impact on film hardness and the hardness increased with increasing power.
基金supported by National Natural Science Foundation of China (Nos. 10975105, 11275136, 10975106, 11175126, 11204266 and 11075114) the National Magnetic Confinement Fusion Science Program of China (Nos. 2010GB106000, 2010GB106009), the Open Project of State Key Laboratory of Functional Materials for Information and Qing Lan Project, a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions and the Program for graduates Research & Innovation in University of Jiangsu Province, China (No. CX10B-031Z)
文摘Dry etching of 6H silicon carbide (6H-SiC) wafers in a C4Fs/Ar dual-frequency capacitively coupled plasma (DF-CCP) was investigated. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to measure the SiC surface structure and compositions, respectively. Optical emission spectroscopy (OES) was used to measure the relative concentration of F radicals in the plasma. It was found that the roughness of the etched SiC surface and the etching rate are directly related to the power of low-frequency (LF) source. At lower LF power, a smaller surface roughness and a lower etching rate are obtained due to weak bombardment of low energy ions on the SiC wafers. At higher LF power the etching rate can be efficiently increased, but the surface roughness increases too. Compared with other plasma dry etching methods, the DF-CCP can effectively inhibit CχFγ films' deposition, and reduce surface residues.
基金financially supported by National Natural Science Foundation of China (Grant No. 11505089)the Doctoral Scientific Research Foundation of Liaoning Province (Grant No. 20170520381)
文摘On the basis of the fluid theory and the drift-diffusion approximation, a numerical model for dual-frequency atmospheric pressure helium discharge is established, in order to investigate the effects of the high frequency source (HF) on the characteristics of dual-frequency atmospheric pressure helium discharge. The numerical results showed that the electron heating rate increases with enhancing HF frequency, as well as the particles densities, electron dissipation rate, current density, net electron generation and bulk plasma region. Moreover, it is also observed that the efficient electron heating region moves when the HF frequency has been changed. The plasma parameters are not linear change with the HF frequency linearly increasing.
基金supported by National Natural Science Foundation of China(Nos.11335004 and 11375040)the Important National Science and Technology Specific Project(No.2011ZX02403-001)
文摘A one-dimensional fluid model is adopted to simulate the characteristics of N2, O2, and N2/O2 dual-frequency (DF) capacitively coupled plasmas (CCPs) under typical conditions in PECVD technologies. Not only the ground, the excited states but also the vibration levels of the main species are considered. The study focuses on the influence of external parameters such as matching of the high-frequency (HF) and low-frequency (LF), HF and LF of the voltage sources, as well as discharge pressures, on physical characteristics of discharges. The results show that the decoupling of the two sources is possible by increasing the applied HF, the electron density and ion flux are determined only by the HF of the voltage source, whereas the LF has a little influence on the plasma characteristics. In addition, the matching of frequency affects the characteristics of discharges to some extent. Fhrthermore, the pressure is a main external parameter affecting the characteristics of discharges, and a small amount of oxygen in N2 plasma can efficiently increase N+ ion flux incident onto the electrode and the density of N atom.
基金supported by National Natural Science Foundation of China(Nos.10975105,11075114)
文摘This work investigated C2F6/O2/Ar plasma chemistry and its effect on the etching characteristics of SiCOH low-k dielectrics in 60 MHz/2 MHz dual-frequency capacitively coupled discharge. For the C2F6/Ar plasma, the increase in the low-frequency (LF) power led to an increased ion impact, prompting the dissociation of C2F6 with higher reaction energy. As a result, fluorocarbon radicals with a high F/C ratio decreased. The increase in the discharge pressure led to a decrease in the electron temperature, resulting in the decrease of C2F6 dissociation. For the C2F6/O2/Ar plasma, the increase in the LF power prompted the reaction between 02 and C2F6, resulting in the elimination of CF3 and CF2 radicals, and the production of an F-rich plasma environment. The F-rich plasma improved the etching characteristics of SiCOH low-k films, leading to a high etching rate and a smooth etched surface.
基金Project supported by the National Natural Science Foundation of China (Grant No 10774031)Natural Science Foundation of Guangdong Province of China (Grant No 07001790)
文摘We study the surface defect gap solitons in an interface between a defect of one-dimensional dual-frequency lattices and the uniform media. Some unique properties are revealed that such lattices can broaden the region of semi-finite gap, and the semi-finite gap exists not only in the positive and zero defects but also in the negative defect; unlike in the regular lattices, the semi-finite gap exists in the positive and zero defects but does not exist in the negative defect. In particular, stable solitons exist almost in the whole semi-finite gap for the positive and zero defects. These properties are different from other lattices with defects. In addition, it is found that the existence of surface dual-frequency lattice solitons does not need a threshold power.
基金Project supported by the National Natural Science Foundation of China(Grant No.62005215)。
文摘The optical injection locking of semiconductor lasers to dual-frequency lasers is studied by numerical simulations.The beat-note signals can be effectively transformed to optical frequency combs due to the effective four wave-mixing in the active semiconductor gain medium. The low-noise Gaussian-like pulse can be obtained by locking the relaxation oscillation and compensating the gain asymmetry. The simulations suggest that pulse trains of width below 30 ps and repetition rate in GHz frequency can be generated simply by the optical injection locking of semiconductor lasers. Since the optical injection locking can broaden the spectrum and amplify the optical power simultaneously, it can be a good initial stage for generating optical frequency combs from dual-frequency lasers by multi-stage of spectral broadening in nonlinear waveguides.
基金the National Natural Science Foundation of China(22265021)the Aeronautical Science Foundation of China(2020Z056056003).
文摘Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic hydrogels are prepared by regulating the complexation effect,solution polarity and curing speed.Meanwhile,collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination.Subsequently,two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect.FeCo/nitrogen-doped carbon(NC)aerogel demonstrates an ultra-strong microwave absorption of−85 dB at an ultra-low loading of 5%.After reducing the time taken by atom shifting,a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained,which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles.Furthermore,both aerogels show excellent thermal insulation property,and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology.The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels,which will enable the development and application of novel and lightweight stealth coatings.
基金supported by the National Basic Research Program of China(No.2014CB046805)the National Natural Science Foundation of China (Nos. 11372211,11672349)
文摘Aiming to decrease the vibration of wing induced by dual-rotor civil turbofan engines,the dynamic models of a single-degree of freedom (DOF) linear main oscillator coupled with single-DOF and two-DOF nonlinear energy sink (NES) are established.According to the related energy criteria for the optimization of the dynamic vibration absorber,focusing on the effects of external excitation on the kinetic energy of the primary mass and total system energy,the vibration suppression effects of single-DOF,two-DOF serial and parallel NES on the main oscillator system are studied.Under the condition that the characteristic parameters of the main oscillator system and additional total mass of the vibration absorber remain unchanged,results show that the two-DOF parallel NES has the best vibration energy suppression effects,which can provide data reference for the optimal design of NES vibration suppression under dual-frequency excitation.
文摘To realize equal power splitting at two arbitrary gigahertz-frequencies, this paper presents a new type of Wilkinson dual frequency power divider, consisting of three-section transmission lines and a series RLC(resistor, inductor and capacitor)circuit. By equating the [ABCD] matrix of the proposed circuit to that of the quarter-wave impedance transformer, coupled with even/odd mode analyses, the design equations of the proposed network are derived. For verification, two dual-frequency power dividers with dual-band operating frequencies at 0.6 GHz and 3.0 GHz, and 3.8 GHz and 10 GHz respectively are designed and simulated. Simulation results show that the dual-band ratio of the proposed power divider can be as large as 5. Comparisons of the simulation results at X-band and S-band with different power dividers indicate that the proposed dual-band power divider performs better under the scenario of the upper operating frequency extending to X-band.
基金supported by National Natural Science Foundation of China(No.11165012)China Postdoctoral Science Foundation Funded Project(2011M501494+2 种基金2012T50831)Project of Key Laboratory of Atomic and Molecular Physics&Functional Materials of Gansu ProvinceProject of Northwest Normal University(NWNU-LKQN-11-9)
文摘Polymer thin film deposition using an atmospheric pressure micro-plasma jet driven by dual-frequency excitations is described in this paper. The discharge process was operated with a mixture of argon (6 slm) and a small amount of acetone (0-2100 ppm). Plasma composition was measured by optical emission spectroscopy (OES). In addition to a large number of Ar spectra lines, we observed some spectra of C, CN, CH and C2. Through changing acetone content mixed in argon, we found that the optimum discharge condition for deposition can be characterized by the maximum concentration of carbonaceous species. The deposited film was characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy. The XPS indicated that the film was mostly composed of C with trace amount of O and N elements. The FTIR suggested different carbon-containing bonds (-CHx, C=O, C=C, C-O-C) presented in the deposited film.
基金supported by National Natural Science Foundation of China (Nos.10635010, 10775103)
文摘Nitrogen dual-frequency capacitively coupled plasmas (DF-CCPs) with different fre- quency configurations, i.e., 60/2 MHz and 60/13.56 MHz, are investigated by means of opticM emission spectroscopy (OES) and a floating double probe. The excited nitrogen molecule ion N+(B) is monitored by measuring the emission intensity of the (0,0) bandhead of the first neg- ative system (FNS) at 391.44 nm. It is shown that in the discharge with 60/13.56 MHz, the N+ emission intensity decreases with the increase in pressure. In the discharge with 60/2 MHz, however, an abnormal enhancement of N+ emission at higher pressure is observed when a higher power of 2 MHz is added. Variation in the ion density shows a similar dependence on the gas pressure. This indicates that in the discharge with 60/2 MHz there is a mode transition from the alpha to gamma type when a higher power of 2 MHz is added at high pressures. Combining the measurements using OES and double probe, the influence of low frequency on the discharge is investigated and the excitation route of the N+(B) state in the discharge of 60/2 MHz is also discussed.