The conception of 'main direction' of multi-dimensional wavelet is established in this paper, and the capabilities of several classical complex wavelets for representing directional singularities are investiga...The conception of 'main direction' of multi-dimensional wavelet is established in this paper, and the capabilities of several classical complex wavelets for representing directional singularities are investigated based on their main directions. It is proved to be impossible to represent directional singularities optimally by a multi-resolution analysis (MRA) of L2(R2). Based on the above results, a new algorithm to construct Q-shift dual tree complex wavelet is proposed. By optimizing the main direction of parameterized wavelet filters, the difficulty in choosing stop-band frequency is overcome and the performances of the designed wavelet are improved too. Furthermore, results of image enhancement by various multi-scale methods are given, which show that the new designed Q-shift complex wavelet do offer significant improvement over the conventionally used wavelets. Direction sensitivity is an important index to the performance of 2D wavelets.展开更多
针对红外与弱可见光图像传统融合算法在结果图像中目标不突出、整体对比度降低、边缘及纹理细节不清晰、缺失等问题,本文提出一种基于感知一致性空间(Perception Unified Color Space,PUCS)和双树复小波变换(Dual Tree Complex Wavelet ...针对红外与弱可见光图像传统融合算法在结果图像中目标不突出、整体对比度降低、边缘及纹理细节不清晰、缺失等问题,本文提出一种基于感知一致性空间(Perception Unified Color Space,PUCS)和双树复小波变换(Dual Tree Complex Wavelet Transform,DTCWT)的融合算法。首先,将红外与弱可见光图像的亮度分量由RGB空间分别转至感知一致性空间得到新的亮度分量以备后续变换处理;接着,将源图像利用DTCWT进行多尺度分解,分别获取各自的低频分量与高频分量;然后,根据不同频带系数特点,提出一种基于区域能量自适应加权的规则对低频子带分量进行融合,采用一种基于拉普拉斯能量和与梯度值向量的规则对不同尺度、方向下高频子带分量进行融合;最后,对融合后的高、低频子带分量进行DTCWT逆变换重构图像,再将其转回至RGB空间以得到最终结果。在不同场景下将本文算法与3种高效融合算法进行对比评价,实验结果表明,本文算法不但在主观视觉上具有显著的目标特征、清晰的背景纹理及边缘细节、整体对比度适宜,而且在8项客观评价指标上也取得了较好的效果。展开更多
基金Supported by National Natural Science Foundation of P.R.China (10171109)the Special Research Fund for Doctoral Program of Higher Education of P. R. China (20049998006)
文摘The conception of 'main direction' of multi-dimensional wavelet is established in this paper, and the capabilities of several classical complex wavelets for representing directional singularities are investigated based on their main directions. It is proved to be impossible to represent directional singularities optimally by a multi-resolution analysis (MRA) of L2(R2). Based on the above results, a new algorithm to construct Q-shift dual tree complex wavelet is proposed. By optimizing the main direction of parameterized wavelet filters, the difficulty in choosing stop-band frequency is overcome and the performances of the designed wavelet are improved too. Furthermore, results of image enhancement by various multi-scale methods are given, which show that the new designed Q-shift complex wavelet do offer significant improvement over the conventionally used wavelets. Direction sensitivity is an important index to the performance of 2D wavelets.
文摘针对红外与弱可见光图像传统融合算法在结果图像中目标不突出、整体对比度降低、边缘及纹理细节不清晰、缺失等问题,本文提出一种基于感知一致性空间(Perception Unified Color Space,PUCS)和双树复小波变换(Dual Tree Complex Wavelet Transform,DTCWT)的融合算法。首先,将红外与弱可见光图像的亮度分量由RGB空间分别转至感知一致性空间得到新的亮度分量以备后续变换处理;接着,将源图像利用DTCWT进行多尺度分解,分别获取各自的低频分量与高频分量;然后,根据不同频带系数特点,提出一种基于区域能量自适应加权的规则对低频子带分量进行融合,采用一种基于拉普拉斯能量和与梯度值向量的规则对不同尺度、方向下高频子带分量进行融合;最后,对融合后的高、低频子带分量进行DTCWT逆变换重构图像,再将其转回至RGB空间以得到最终结果。在不同场景下将本文算法与3种高效融合算法进行对比评价,实验结果表明,本文算法不但在主观视觉上具有显著的目标特征、清晰的背景纹理及边缘细节、整体对比度适宜,而且在8项客观评价指标上也取得了较好的效果。