期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
改进YOLOv8s-Pose多人姿态估计轻量化模型研究 被引量:1
1
作者 傅裕 高树辉 《计算机科学与探索》 北大核心 2025年第3期682-692,共11页
针对现有人体姿态估计模型计算量大、检测速度慢等问题,提出了一种基于YOLOv8s-Pose模型的轻量化改进算法。在backbone中引入轻量化模块C2f-GhostNetBottleNeckV2替换原先C2f,减少参数量,提高模型速度。引入Non_Local注意力机制捕捉并... 针对现有人体姿态估计模型计算量大、检测速度慢等问题,提出了一种基于YOLOv8s-Pose模型的轻量化改进算法。在backbone中引入轻量化模块C2f-GhostNetBottleNeckV2替换原先C2f,减少参数量,提高模型速度。引入Non_Local注意力机制捕捉并传递人体关键点位置,直接融合全面的信息,为后续的层级提供更为丰富和深入的语义信息,提升整体的信息处理深度和广度,强化特征提取的效能,减少模型轻量化后精度降低问题,再将neck层引入加权双向特征金字塔网络,通过双向融合的理念,对自顶向下和自底向上的信息流动路径进行了重新规划,确保在处理不同尺度的特征信息时达到良好的平衡,给网络增加一个小目标检测头,减少对小目标的漏检情况,将CIOU损失函数更换为Focal-EIOU损失函数,以增强对复杂场景和多目标场景下的鲁棒性。实验结果表明,改进后的实验模型参数量降低了9.3%,在COCO2017人体关键点数据集上,与原模型相比mAP@0.50提升了0.4个百分点,mAP@0.50:0.95提升了0.6个百分点。可见,所提出的轻量化改进算法在减少模型参数量的同时,提升了人体姿态估计的算法精度,尤其对小目标检测有显著改善,为实现实时准确的姿态估计提供了有效手段。 展开更多
关键词 姿态估计 YOLOv8s-Pose GhostNetV2网络 加权双向特征金字塔网络 损失函数
在线阅读 下载PDF
基于生成对抗网络的云制造工业服务选择方法
2
作者 郑秀宝 李静 +1 位作者 祝铭 宁莹莹 《计算机科学》 北大核心 2025年第4期54-63,共10页
随着信息技术和制造技术的深度融合,云制造工业生产已成为制造业的关键部分。云制造环境的动态性和服务资源间的相互依赖关系,使得选择最佳工业资源服务变得困难。现有的选择优化方法大多基于启发式算法,但这些算法往往缺乏对云制造环... 随着信息技术和制造技术的深度融合,云制造工业生产已成为制造业的关键部分。云制造环境的动态性和服务资源间的相互依赖关系,使得选择最佳工业资源服务变得困难。现有的选择优化方法大多基于启发式算法,但这些算法往往缺乏对云制造环境的自适应能力。因此,文中构建了一种云制造环境下的服务选择模型,提出了一种基于深度学习和生成对抗网络思想的服务选择算法,该模型能够灵活适应环境变化,利用图表示学习方法构建任务服务约束图,根据任务、服务和工业生产约束之间的内在联系学习资源服务特征,在算法改进阶段引入梯度优化和损失函数策略,选择最佳工业资源服务。实验结果表明,所提算法相较于其他对比算法表现出了更强的性能优势。 展开更多
关键词 云制造 工业生产约束 图表示学习 生成对抗网络 梯度损失函数
在线阅读 下载PDF
改进YOLOv5的织物缺陷检测方法 被引量:3
3
作者 朱磊 王倩倩 +2 位作者 姚丽娜 潘杨 张博 《计算机工程与应用》 CSCD 北大核心 2024年第20期302-311,共10页
为了在不增加网络参数量的条件下提升深度学习方法对织物缺陷检测的精度,提出了一种基于改进YOLOv5的织物缺陷检测方法。通过深度卷积改造通道注意力,剪裁最大池化优化空间注意力,并通过二者构建的双级联注意力机制来搭建特征提取子网络... 为了在不增加网络参数量的条件下提升深度学习方法对织物缺陷检测的精度,提出了一种基于改进YOLOv5的织物缺陷检测方法。通过深度卷积改造通道注意力,剪裁最大池化优化空间注意力,并通过二者构建的双级联注意力机制来搭建特征提取子网络,从而提高网络对缺陷区域纹理和语义特征的提取能力;采用鬼影混洗卷积改进特征融合子网络,强化对提取特征的筛选,在降低模型参数量的同时,改善缺陷信息丢失和无效信息冗余问题;在检测端引入具有角度损失的新型损失函数SIOU,来促进真实框和预测框的拟合并提升对缺陷预测的准确性。实验结果表明:改进的YOLOv5方法在降低YOLOv5基准模型复杂度和计算量的同时,与YOLOv7等六种先进方法相比,可获得更高的检测精度,相较原模型mAP@0.5值提高了2.6个百分点,mAP@0.5:0.9值提高了1.3个百分点。 展开更多
关键词 织物缺陷检测 卷积神经网络 YOLOv5 双级联注意力机制 损失函数
在线阅读 下载PDF
改进YOLOv5s的钢轨表面缺陷检测算法 被引量:3
4
作者 李军 许炫皓 王耀弘 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第8期130-137,共8页
针对钢轨多类别缺陷识别任务中样本不平衡、尺度差异大,提出一种改进YOLOv5s的钢轨表面缺陷检测算法。在骨干网络中嵌入全局注意力机制,增强网络对缺陷特征的提取能力;构建加权双向特征融合网络,减少缺陷目标特征信息的丢失;在颈部采用... 针对钢轨多类别缺陷识别任务中样本不平衡、尺度差异大,提出一种改进YOLOv5s的钢轨表面缺陷检测算法。在骨干网络中嵌入全局注意力机制,增强网络对缺陷特征的提取能力;构建加权双向特征融合网络,减少缺陷目标特征信息的丢失;在颈部采用改进的卷积结构,降低模型复杂度,同时提升检测精度;最后引入WIoU损失函数提升低质量样本预测能力。该方法在2种不同类别的数据集中都具有较好的表现,在RailDefect公共数据集上,其平均精度均值(mAP)达到91.2%,较YOLOv5s网络提高了3.6%,准确率(precision)和召回率(recall)分别提高了3.3%和3.9%。该算法在保证较高检测精度的同时降低了模型复杂度,更适合部署于算力有限的移动端轨道检测设备中,具有一定的实用价值。 展开更多
关键词 钢轨多类别缺陷 YOLOv5s 注意力机制 加权双向特征融合网络 损失函数
在线阅读 下载PDF
基于YOLOv8改进的脑癌检测算法
5
作者 王喆 赵慧俊 +2 位作者 谭超 李骏 申冲 《计算机科学》 CSCD 北大核心 2024年第S02期444-450,共7页
自动检测脑部肿瘤在磁共振成像中的位置是一个复杂、繁重的任务,需要耗费大量时间和资源。传统识别方案经常出现误解、遗漏和误导的情况,从而影响患者的治疗进度,对患者的生命安全产生影响。为了进一步提高鉴定的效果,引入了4项关键改... 自动检测脑部肿瘤在磁共振成像中的位置是一个复杂、繁重的任务,需要耗费大量时间和资源。传统识别方案经常出现误解、遗漏和误导的情况,从而影响患者的治疗进度,对患者的生命安全产生影响。为了进一步提高鉴定的效果,引入了4项关键改进措施。首先,采用了高效的多尺度注意力EMA(Efficient Multi-scale Attention),这种方法既可以对全局信息进行编码,也可以对信息进行重新校准,同时通过并行的分支输出特征进行跨维度的交互,使信息进一步聚合。其次,引入了BiFPN(Bidirectional Feature Pyramid Network)模块,并对其结构进行改进,以便缩短每一次检测所需要的时间,同时提升图像识别效果。然后采用MDPIoU损失函数和Mish激活函数进行改进,进一步提高检测的准确度。最后进行仿真实验,实验结果表明,改进的YOLOv8算法在脑癌检测中的精确率、召回率、平均精度均值均有提升,其中Precision提高了4.48%,Recall提高了2.64%,mAP@0.5提高了2.6%,mAP@0.5:0.9提高了7.0%。 展开更多
关键词 YOLOv8 脑癌 Efficient Multi-Scale Attention模块 bidirectional Feature Pyramid network结构 Missed Softplus with Identity Shortcut激活函数 Minimum Point Distance Intersection over Union损失函数
在线阅读 下载PDF
基于深度学习特征融合和联合约束的单通道语音分离方法 被引量:5
6
作者 孙林慧 王灿 +1 位作者 梁文清 李平安 《电子与信息学报》 EI CSCD 北大核心 2022年第9期3266-3276,共11页
为了提高单通道语音分离性能,该文提出基于深度学习特征融合和联合约束的单通道语音分离方法。传统基于深度学习的分离算法的损失函数只考虑了预测值和真实值的误差,这使得分离后的语音与纯净语音之间误差较大。该文提出一种新的联合约... 为了提高单通道语音分离性能,该文提出基于深度学习特征融合和联合约束的单通道语音分离方法。传统基于深度学习的分离算法的损失函数只考虑了预测值和真实值的误差,这使得分离后的语音与纯净语音之间误差较大。该文提出一种新的联合约束损失函数,该损失函数不仅约束了理想比值掩蔽的预测值和真实值的误差,还惩罚了相应幅度谱的误差。另外,为了充分利用多种特征的互补性,提出一种含特征融合层的卷积神经网络(CNN)结构。利用该CNN提取多通道输入特征的深度特征,并在融合层中将深度特征与声学特征融合用来训练分离模型。由于融合构成的特征含有丰富的语音信息,具有强的语音信号表征能力,使得分离模型预测的掩蔽更加准确。实验结果表明,从信号失真比(SDR)、主观语音质量评估(PESQ)和短时客观可懂度(STOI)3个方面评价,相比其他优秀的基于深度学习的语音分离方法,该方法能够更有效地分离目标语音。 展开更多
关键词 语音分离 联合约束 特征融合 损失函数 卷积神经网络
在线阅读 下载PDF
改进YOLOv5s算法在非机动车头盔佩戴检测中的应用 被引量:5
7
作者 张瑞芳 董凤 程小辉 《河南科技大学学报(自然科学版)》 CAS 北大核心 2023年第1期44-53,M0005,共11页
针对现有非机动车头盔佩戴检测算法在车流密集场景中存在漏检,对佩戴其他帽子存在误检的问题,提出一种改进YOLOv5s(you only look once version5)的头盔佩戴检测算法YOLOv5s-BC。首先,采用软池化替换特征金字塔池化结构中的最大池化层,... 针对现有非机动车头盔佩戴检测算法在车流密集场景中存在漏检,对佩戴其他帽子存在误检的问题,提出一种改进YOLOv5s(you only look once version5)的头盔佩戴检测算法YOLOv5s-BC。首先,采用软池化替换特征金字塔池化结构中的最大池化层,以放大更大强度的特征激活;其次,将坐标注意力机制和加权双向特征金字塔网络结合,搭建一种高效的双向跨尺度连接的加权特征聚合网络,以增强不同层级之间的信息传播;最后,用EIoU损失函数优化边框回归,精确目标定位。实验结果表明:在自制头盔数据集上,改进后的算法的平均精度(mAP)可达98.4%,比原算法提高了6.3%,推理速度达到58.69帧/s,整体性能优于其他主流算法,可满足交通道路环境下头盔佩戴检测的准确率和实时性要求。 展开更多
关键词 非机动车头盔检测 坐标注意力机制 加权双向特征金字塔网络 EIoU损失函数 YOLOv5s
在线阅读 下载PDF
基于FBEC-YOLOv5s的采掘工作面多目标检测研究 被引量:1
8
作者 张辉 苏国用 赵东洋 《工矿自动化》 CSCD 北大核心 2023年第11期39-45,共7页
针对采掘工作面目标尺度跨度大、多目标间相互遮挡严重及恶劣环境导致的检测精度降低等问题,提出了一种基于FBEC-YOLOv5s的采掘工作面多目标检测算法。首先,在主干网络引入FasterNet网络,以凭借其残差连接与批标准化模块,增强模型的特... 针对采掘工作面目标尺度跨度大、多目标间相互遮挡严重及恶劣环境导致的检测精度降低等问题,提出了一种基于FBEC-YOLOv5s的采掘工作面多目标检测算法。首先,在主干网络引入FasterNet网络,以凭借其残差连接与批标准化模块,增强模型的特征提取和语义信息捕捉能力;其次,在YOLOv5s模型颈部融合BiFPN网络,以通过其双向跨尺度连接和快速归一化融合操作,实现多尺度特征的快速捕捉与融合;最后,采用ECIoU损失函数代替CIoU损失函数,以提升检测框定位精度和模型收敛速度。实验结果表明:(1)在满足煤矿井下实时检测要求的同时,FBEC-YOLOv5s模型的准确率较YOLOv5s模型的准确率提升了3.6%。(2)与YOLOv5s模型相比,FBEC-YOLOv5s模型的平均检测精度均值上升了2.8%,平均检测精度均值为92.4%,能够满足实时检测要求。(3)FBEC-YOLOv5s模型的综合检测性能好,能够在恶劣环境、多目标间相互遮挡严重及目标尺度跨度大导致检测精度降低的情况下表现出良好的实时检测能力且具有较好的鲁棒性。 展开更多
关键词 采掘工作面 多目标检测 FasterNet网络 双向特征金字塔网络 YOLOv5s BiFPN ECIoU损失函数
在线阅读 下载PDF
面向无人机遥感场景的轻量级小目标检测算法 被引量:11
9
作者 胡清翔 饶文碧 熊盛武 《计算机工程》 CAS CSCD 北大核心 2023年第12期169-177,共9页
在基于深度学习的目标检测算法中,YOLO算法因兼具速度与精度的优势而备受关注,但是将其应用于无人机遥感领域时存在检测速度较慢、计算资源要求较高、小目标检测精度不佳等问题。为此,提出基于YOLO的轻量级小目标检测算法SS-YOLO。使用... 在基于深度学习的目标检测算法中,YOLO算法因兼具速度与精度的优势而备受关注,但是将其应用于无人机遥感领域时存在检测速度较慢、计算资源要求较高、小目标检测精度不佳等问题。为此,提出基于YOLO的轻量级小目标检测算法SS-YOLO。使用轻量的主干网络提升算法的推理速度,根据特征金字塔网络分治思想,加入下采样倍数为4的高分辨特征图P2用于检测微小目标。为解决高分辨率特征图(P2、P3)中语义信息不足的问题,构建结合自适应融合因子的语义增强上采样模块。针对定位损失函数中IoU度量方法对目标尺寸敏感所带来的影响小目标定位精确性的问题,设计结合归一化Wasserstein距离度量方法与中心点距离惩罚项的L_(CNWD)定位回归损失函数。实验结果表明,与YOLOv5s以及最新的YOLOv7-tiny相比,改进后的SS-YOLO模型参数量分别减少了31.3%和20.6%,与YOLOv7-tiny相比,mAP在VisDrone与AI-TOD数据集上分别提升了7.5和7.0个百分点;与YOLOv5s相比,mAP分别提升了2.3和3.6个百分点。当输入图片尺寸为800×800像素时,SS-YOLO的FPS为110帧/s,能够在满足无人机等边缘设备实时检测的同时,显著提升小目标的检测结果。 展开更多
关键词 小目标检测 YOLO网络 轻量级网络 双向特征金字塔 定位损失函数
在线阅读 下载PDF
双损失估计下强化学习型图像匹配方法 被引量:2
10
作者 谌钟毓 韩燮 +2 位作者 谢剑斌 熊风光 况立群 《计算机工程与应用》 CSCD 北大核心 2022年第5期240-246,共7页
学习型特征检测器利用神经网络来检测和匹配图像特征点,其网络参数通常通过优化低层视觉的匹配准确率而训练得到,然而在高级视觉任务中,低层图像配准率的提升未必能带来更佳性能。针对该问题,提出一种双损失误差策略下的强化学习方法,... 学习型特征检测器利用神经网络来检测和匹配图像特征点,其网络参数通常通过优化低层视觉的匹配准确率而训练得到,然而在高级视觉任务中,低层图像配准率的提升未必能带来更佳性能。针对该问题,提出一种双损失误差策略下的强化学习方法,一方面,将学习不变特征变换(LIFT)所得到的特征点和描述符以概率形式表示,估算出图像间的相对位姿,并与真实位姿比较获得位姿误差。另一方面,利用匹配图像间极线约束的几何性质,估算出匹配特征点间描述子的误差。然后基于上述两种损失误差优化LIFT,最终学习得到神经网络参数。实验中使用H-Patches数据集和自制数据集,将图像输送到LIFT特征检测器和视觉管道中,以端到端的方式训练神经网络参数。实验结果表明,该算法显著提高了特征点的匹配精度。 展开更多
关键词 强化学习 极线约束 特征描述子 神经网络 损失函数 图像匹配
在线阅读 下载PDF
基于渐进式双网络模型的低曝光图像增强方法 被引量:29
11
作者 黄淑英 胡威 +2 位作者 杨勇 李红霞 汪斌 《计算机学报》 EI CSCD 北大核心 2021年第2期384-394,共11页
传统的图像增强方法对低曝光图像进行增强时,通常只考虑到了亮度的提升,忽略了增强过程中带来的噪声放大问题.而当前基于深度学习的方法利用端到端的网络直接学习低曝光图像到正常图像的映射关系,忽略了低曝光图像形成的物理原理,也没... 传统的图像增强方法对低曝光图像进行增强时,通常只考虑到了亮度的提升,忽略了增强过程中带来的噪声放大问题.而当前基于深度学习的方法利用端到端的网络直接学习低曝光图像到正常图像的映射关系,忽略了低曝光图像形成的物理原理,也没有考虑解决噪声放大的问题.针对上述问题,本文通过对图像降质的本质原因进行分析,提出一种基于渐进式双网络模型的低曝光图像增强方法,该方法包含图像增强模块以及图像去噪模块两个部分.对每个模块的构建也采用了渐进式的思想,考虑了图像由暗到亮的亮度变化,以及从粗到细的图像恢复过程,使增强后的结果更接近真实图像.为了更好地训练网络,本文构建了一种双向约束损失函数,从图像降质模型的正反两个方向使网络学习结果逼近真实数据,达到动态平衡.为了验证本文方法的有效性,本文与一些主流的方法从主观和客观两方面进行了实验对比,实验结果证明了本文方法得到的结果更接近真实图像,获得了更优的性能指标. 展开更多
关键词 低曝光图像增强 渐进式 双网络 双向约束损失函数
在线阅读 下载PDF
结合分层深度网络与双向五元组损失的跨模态异常检测 被引量:1
12
作者 范烨 彭淑娟 +2 位作者 柳欣 崔振 王楠楠 《计算机研究与发展》 EI CSCD 北大核心 2022年第12期2770-2780,共11页
大数据环境下的跨模态异常检测是一个非常有价值且极具挑战性的工作.针对目前已有跨模态异常检测框架对数据异常值类型检测不全面以及数据利用率较低的问题,提出了一个结合分层深度网络与相似度双向五元组损失的跨模态异常检测方法.首先... 大数据环境下的跨模态异常检测是一个非常有价值且极具挑战性的工作.针对目前已有跨模态异常检测框架对数据异常值类型检测不全面以及数据利用率较低的问题,提出了一个结合分层深度网络与相似度双向五元组损失的跨模态异常检测方法.首先,提出的框架引入一个单视图异常检测网络层,通过模态内近邻样本相似度来检测数据样本中是否存在属性异常与部分属性类别异常点;接着,提出基于相似度双向五元组损失的双分支深度网络用于检测数据中的类别异常与剩余部分的属性类别异常,该损失一方面能够使不同属性数据正交化,另一方面使得相同属性数据之间线性相关,从而有效地加大了不同属性数据之间的特征差异性,以及增加了相同属性之间的特征相关性;同时,提出的双分支网络通过模态间双向约束和模态内的邻域约束,极大提高了数据利用率和模型的泛化能力.实验结果表明,所提出的框架可以全面检测出不同模态中所有的异常类型样本点,并且表现优于现有的可应用于跨模态异常检测的方法,优势明显. 展开更多
关键词 跨模态异常检测 分层深度网络 双向五元组损失 邻域约束 双向约束
在线阅读 下载PDF
基于双注意力模型和迁移学习的Apex帧微表情识别 被引量:4
13
作者 徐玮 郑豪 杨种学 《智能系统学报》 CSCD 北大核心 2021年第6期1015-1020,共6页
微表情具有持续时间短、强度低的特点,其识别准确率普遍不高。针对该问题提出了一种改进的深度学习识别方法,该方法取微表情视频序列中的Apex帧,采用集成空间、通道双注意力模块的ResNet18网络,引入Focal Loss函数解决微表情数据样本不... 微表情具有持续时间短、强度低的特点,其识别准确率普遍不高。针对该问题提出了一种改进的深度学习识别方法,该方法取微表情视频序列中的Apex帧,采用集成空间、通道双注意力模块的ResNet18网络,引入Focal Loss函数解决微表情数据样本不平衡的问题,并将宏表情识别领域的先验知识迁移到微表情识别领域,以提高识别效果。在CASME II微表情数据集上使用"留一交叉验证法"进行实验,结果表明本文方法相比一些现有的方法识别准确率及F_(1)值更高。 展开更多
关键词 微表情识别 深度学习 Apex帧 双注意力模型 ResNet18网络 Focal loss函数 宏表情 迁移学习
在线阅读 下载PDF
基于轻量级卷积神经网络的手势识别检测 被引量:10
14
作者 牛雅睿 武一 +2 位作者 孙昆 卢昊 赵普 《电子测量技术》 北大核心 2022年第4期91-98,共8页
针对基于深度学习的手势识别模型参数量大、训练速度缓慢且对设备要求高,增加了成本的问题,提出了一种基于轻量级卷积神经网络的手势识别检测算法。首先利用Ghost模块设计轻量级主干特征提取网络,减少网络的参数量和计算量;通过引入加... 针对基于深度学习的手势识别模型参数量大、训练速度缓慢且对设备要求高,增加了成本的问题,提出了一种基于轻量级卷积神经网络的手势识别检测算法。首先利用Ghost模块设计轻量级主干特征提取网络,减少网络的参数量和计算量;通过引入加权双向特征金字塔网络改进特征融合网络,提升网络检测精度;最后使用CIoU损失函数作为边界框回归损失函数并加入Mosaic数据增强技术,加快模型收敛速度提升网络的鲁棒性。实验结果表明,改进后的模型大小仅为17.9MB,较原YOLOv3模型大小减小了92.4%,平均精确度提高了0.6%。因此新的检测方法在减少模型参数量的同时,还可保证模型的检测精度和效率,为手势识别检测提供理论参考。 展开更多
关键词 手势识别 轻量级网络 YOLOv3 Ghost模块 加权双向特征金字塔 CIoU损失函数
在线阅读 下载PDF
联合胶囊和双向LSTM网络的VPN加密流量识别 被引量:4
15
作者 杨忠富 常俊 +2 位作者 许妍 罗金燕 吴彭 《计算机工程与应用》 CSCD 北大核心 2023年第23期246-253,共8页
为了提高对网络资源的有效管理,加密流量识别已成为网络安全领域的一大挑战,目前研究大多是基于深度学习的方法,但这些方法忽略了网络流量的层次化特征,如固定字符串的位置、不同协议的Bit转换成图像时造成的错位,对此,提出一种联合胶... 为了提高对网络资源的有效管理,加密流量识别已成为网络安全领域的一大挑战,目前研究大多是基于深度学习的方法,但这些方法忽略了网络流量的层次化特征,如固定字符串的位置、不同协议的Bit转换成图像时造成的错位,对此,提出一种联合胶囊网络(capsule network,CapsNet)和双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)的深度神经网络来对加密流量进行识别。该模型分别提取了加密流量的空间位置特征和时序特征,最后使用Softmax分类器实现对加密流量服务的识别,其中,针对CapsNet进行了改进,将原来的1层9×9卷积优化成了4层3×3卷积,并提出一种联合损失函数。该方法在ISCX VPN-non VPN公共数据集上进行了验证,三个分类实验结果表明,该模型的分类准确率、精确率、召回率和F1值均在98%以上,优于最先进的加密流量分类方法。 展开更多
关键词 加密流量识别 深度学习 层次化特征 胶囊网络 双向长短期记忆网络 联合损失函数
在线阅读 下载PDF
融合CA-BiFPN的轻量化人体姿态估计算法 被引量:4
16
作者 皮骏 牛厚兴 高志云 《图学学报》 CSCD 北大核心 2023年第5期868-878,共11页
针对现有的基于热力图的人体姿态估计网络模型复杂度高、算力需求大、不易部署至嵌入式平台和无人机移动平台等问题,提出了一种基于YOLOv5s6-Pose-ti-lite不使用热力图的轻量化人体姿态估计网络模型。通过将主干网络替换为GhostNet网络... 针对现有的基于热力图的人体姿态估计网络模型复杂度高、算力需求大、不易部署至嵌入式平台和无人机移动平台等问题,提出了一种基于YOLOv5s6-Pose-ti-lite不使用热力图的轻量化人体姿态估计网络模型。通过将主干网络替换为GhostNet网络,旨在以更少的计算资源输出更有效的特征信息,提升网络检测速度,缓解网络冗余的问题;在主干网络中结合轻量化的坐标注意力CA模块,将图片的人体关键点位置信息聚集到通道上,增强特征提取能力;引入加权双向特征金字塔网络,提升模型的特征融合能力,平衡不同尺度的特征信息;最后将CIoU损失函数替换为Wise-Io U(WIo U),进一步提升模型对人体关键点回归的性能。结果表明,在COCO2017人体关键点数据集上,优化后的网络模型参数量降低26.2%,计算量降低30.0%,平均精确度提升1.7个百分点、平均召回率提升2.7个百分点,能够满足实时性的效果,验证了所提模型的可行性和有效性。 展开更多
关键词 人体姿态估计 轻量化 坐标注意力 加权双向特征金字塔网络 损失函数
在线阅读 下载PDF
一种改进的BR-YOLOv3目标检测网络 被引量:4
17
作者 宦海 陈逸飞 +2 位作者 张琳 李鹏程 朱蓉蓉 《计算机工程》 CAS CSCD 北大核心 2021年第10期186-193,共8页
在目标检测任务中不同目标间尺寸差异较大,导致多尺寸目标难以被有效检测。基于YOLOv3提出BR-YOLOv3目标检测网络。利用空洞卷积提升网络层感受野尺寸的特性,使用不同数量、尺寸、膨胀率的卷积构建多层并行的空洞感受野模块。通过双向... 在目标检测任务中不同目标间尺寸差异较大,导致多尺寸目标难以被有效检测。基于YOLOv3提出BR-YOLOv3目标检测网络。利用空洞卷积提升网络层感受野尺寸的特性,使用不同数量、尺寸、膨胀率的卷积构建多层并行的空洞感受野模块。通过双向特征金字塔结构实现浅深层特征的双向融合,提升浅层预测分支分类、深层预测分支目标定位能力。使用LOSSGIOU定位损失函数实现目标回归过程整体化,从而降低目标漏检率。实验结果表明,BR-YOLOv3目标检测网络在Pascal VOC测试集上的测试平均精度均值达到79.24%,相比原网络提升3.52个百分点,且在检测精度上优于SSD、Faster RCNN等主流目标检测网络。 展开更多
关键词 目标检测 目标尺寸差异 空洞感受野模块 双向特征金字塔 定位损失函数
在线阅读 下载PDF
具有条件约束的金字塔视野扩张网络去雾算法
18
作者 杨德明 吴青娥 +2 位作者 谢添 陈虎 安紫明 《无线电通信技术》 2022年第5期935-944,共10页
为了消除雾霾天气对机器光学视觉系统的影响,当今社会急需有效的图像去雾算法。基于此提出端到端具有条件约束的金字塔视野扩张网络去雾算法。该算法通过金字塔视野扩张网络有效地提取有雾图像的上下文语义信息,以大气散射模型为约束,... 为了消除雾霾天气对机器光学视觉系统的影响,当今社会急需有效的图像去雾算法。基于此提出端到端具有条件约束的金字塔视野扩张网络去雾算法。该算法通过金字塔视野扩张网络有效地提取有雾图像的上下文语义信息,以大气散射模型为约束,能够还原出高质量的无雾图,有效解决雾霾天气对机器光学视觉系统的影响。与其他流行去雾算法进行了对比实验,实验结果表明,所提出的算法在O-HAZE真实雾霾数据集的去雾结果平均PSNR指标高于对比算法2.4 dB,去雾效果优于对比算法,具有有效性和鲁棒性。 展开更多
关键词 金字塔视野扩张网络 条件约束 多分量损失函数 端到端去雾 去雾算法
在线阅读 下载PDF
基于RT-DETR改进的织物疵点检测算法
19
作者 朱胜利 李明 何志奇 《毛纺科技》 2025年第8期118-127,共10页
为了解决织物疵点检测中疵点类型多、大小不平衡和小目标疵点难以检测的问题,基于RT-DETR(Real-Time DEtection TRansformer)提出了一种改进的织物疵点检测算法FD-DETR(Fabric Defect-DETR)。将可变形注意力机制模块DA(Deformable Atten... 为了解决织物疵点检测中疵点类型多、大小不平衡和小目标疵点难以检测的问题,基于RT-DETR(Real-Time DEtection TRansformer)提出了一种改进的织物疵点检测算法FD-DETR(Fabric Defect-DETR)。将可变形注意力机制模块DA(Deformable Attention)引入特征交互模块AIFI(Attention-based Intrascale Feature Interaction)来增强算法对疵点感受野的适应性,以更好地实现对不同类型和不同大小疵点的检测;在Neck层将Slim-Neck与加权双向特征金字塔Bi-FPN相结合形成GVBi-FPN模块以替换CCFM模块,降低模型复杂度的同时提高对小疵点的检测能力;在分类损失部分将RT-DETR的原分类损失函数Varifocal Loss与Slide Loss结合为Slide Varifocal Loss,提高困难样本的训练权重,使算法注重更难检测的目标以提高困难样本的检测精度。结果表明:在检测20类疵点时,相较RT-DETR,FD-DETR算法的参数量有所降低,并且在mAP@0.5方面提高了3.3%,mAP@0.5∶0.95方面提高了1.7%,实现了45.3帧/s的检测速度,能够快速准确的对不同大小疵点进行检测,有效提升算法性能。 展开更多
关键词 织物疵点检测 RT-DETR 加权双向特征金字塔 可变形注意力 损失函数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部