单级式双有源桥(dual active bridge,DAB)DC/AC变换器控制自由度多,变压器匝比、漏感、开关频率等参数相互耦合,导致变换器效率优化面临多重制约。该文分析变压器匝比、漏感与软开关范围、漏感电流有效值、漏感电流峰值之间的约束关系,...单级式双有源桥(dual active bridge,DAB)DC/AC变换器控制自由度多,变压器匝比、漏感、开关频率等参数相互耦合,导致变换器效率优化面临多重制约。该文分析变压器匝比、漏感与软开关范围、漏感电流有效值、漏感电流峰值之间的约束关系,提出直接表征DAB-DC/AC变换器效率的物理量:效率敏感因子。通过研究效率敏感因子对系统损耗的影响机理,实现变换器效率最优的硬件参数设计,为多参数耦合的单级式DAB-DC/AC变换器效率优化提供理论指导。最后通过一台450 W样机验证所提理论的正确性。展开更多
为在实验室环境下实现40 k W容量的船舶中压电力模拟试验系统,需要将380 V发电机组输出的交流电经电力变换得到稳定的4 k V直流输出。系统采用两级变换,前级AC/DC变换采用无桥boost型PFC(Power Factor Correction)电路,后级DC/DC变换采...为在实验室环境下实现40 k W容量的船舶中压电力模拟试验系统,需要将380 V发电机组输出的交流电经电力变换得到稳定的4 k V直流输出。系统采用两级变换,前级AC/DC变换采用无桥boost型PFC(Power Factor Correction)电路,后级DC/DC变换采用四路全桥PWM(Pulse Width Modulation)变换器级联进行升压,其中一路为移相全桥完成调压控制输出,三路为普通全桥得到固定电压输出。在MATLAB/Simulink环境下对该AC/DC变换器系统进行了系统建模,仿真结果表明,该方案能输出稳定的4 k V电压,效率94.8%,纹波2.08%。展开更多
文摘单级式双有源桥(dual active bridge,DAB)DC/AC变换器控制自由度多,变压器匝比、漏感、开关频率等参数相互耦合,导致变换器效率优化面临多重制约。该文分析变压器匝比、漏感与软开关范围、漏感电流有效值、漏感电流峰值之间的约束关系,提出直接表征DAB-DC/AC变换器效率的物理量:效率敏感因子。通过研究效率敏感因子对系统损耗的影响机理,实现变换器效率最优的硬件参数设计,为多参数耦合的单级式DAB-DC/AC变换器效率优化提供理论指导。最后通过一台450 W样机验证所提理论的正确性。
文摘为在实验室环境下实现40 k W容量的船舶中压电力模拟试验系统,需要将380 V发电机组输出的交流电经电力变换得到稳定的4 k V直流输出。系统采用两级变换,前级AC/DC变换采用无桥boost型PFC(Power Factor Correction)电路,后级DC/DC变换采用四路全桥PWM(Pulse Width Modulation)变换器级联进行升压,其中一路为移相全桥完成调压控制输出,三路为普通全桥得到固定电压输出。在MATLAB/Simulink环境下对该AC/DC变换器系统进行了系统建模,仿真结果表明,该方案能输出稳定的4 k V电压,效率94.8%,纹波2.08%。