Energetic compounds bearing the trinitromethyl group are garnering broad attraction as potential candidates for a new generation of high energy dense oxidizers.In this work,an effective dual modulation strategy involv...Energetic compounds bearing the trinitromethyl group are garnering broad attraction as potential candidates for a new generation of high energy dense oxidizers.In this work,an effective dual modulation strategy involving both molecular isomerization and crystal morphology control was employed to design and optimize trinitromethyl-oxadiazole with improved comprehensive performance.Utilizing this dual strategy,3,5-bis(trinitromethyl)-1,2,4-oxadiazole(3)was synthesized,resulting in the formation of two distinct crystal morphologies(needle and sheet)corresponding to two crystal forms(3-a and3-b).Encouragingly,while maintaining ultra-high oxygen balance(21.73%),3 achieves impressive densities(1.97-1.98 g/cm^(3)).To our knowledge,the density of 1.98 g/cm^(3)for 3-a sets a new record among that of nitrogen-rich monocyclic compounds.Notably,practical crystal morphology prediction was creatively introduced to guide the experimental crystallization conditions of 3,increasing the impact sensitivity and friction sensitivity from 1 J to 80 N(3-a)to 10 J and 240 N(3-b),respectively.Additionally,the crystal structural analyses and theoretical calculations were conducted to elucidate the reasons of differences between 3-a and 3-b in density and stability.This work provides an efficient strategy to enhance performance of trinitromethyl derivatives,broadening the path and expanding the toolbox for energetic materials.展开更多
在理想环境下,双双曲调频(dual hyperbolic frequency modulation,Dual-HFM)速度谱估计方法可得到高分辨率的连续多普勒估计结果。然而由多径、双目标环境引起的旁瓣干扰,削弱了速度谱方法抑制噪声的能力,影响目标参数估计。针对该方法...在理想环境下,双双曲调频(dual hyperbolic frequency modulation,Dual-HFM)速度谱估计方法可得到高分辨率的连续多普勒估计结果。然而由多径、双目标环境引起的旁瓣干扰,削弱了速度谱方法抑制噪声的能力,影响目标参数估计。针对该方法在多径、双目标等各种复杂水声环境中的应用,进行了深入的讨论,推导了多径、双目标造成的速度谱旁瓣位置,并提出了基于多帧信号的速度谱旁瓣抑制方法,利用另一维度信号空间中目标回波信息与多径杂波旁瓣的差异性,抑制了复杂水下环境中的速度谱旁瓣,并保留了速度谱计算量低的优点。通过数值仿真验证了所提方法的适用性,为低信噪比、多径、双目标环境下的多普勒估计提供了理论依据。展开更多
基金supported by the National Natural Science Foundation of China(No.22375021,22235003,22261132516&22205021)the BIT Research and Innovation 265 Promoting Project(Grant No.2023YCXZ017)。
文摘Energetic compounds bearing the trinitromethyl group are garnering broad attraction as potential candidates for a new generation of high energy dense oxidizers.In this work,an effective dual modulation strategy involving both molecular isomerization and crystal morphology control was employed to design and optimize trinitromethyl-oxadiazole with improved comprehensive performance.Utilizing this dual strategy,3,5-bis(trinitromethyl)-1,2,4-oxadiazole(3)was synthesized,resulting in the formation of two distinct crystal morphologies(needle and sheet)corresponding to two crystal forms(3-a and3-b).Encouragingly,while maintaining ultra-high oxygen balance(21.73%),3 achieves impressive densities(1.97-1.98 g/cm^(3)).To our knowledge,the density of 1.98 g/cm^(3)for 3-a sets a new record among that of nitrogen-rich monocyclic compounds.Notably,practical crystal morphology prediction was creatively introduced to guide the experimental crystallization conditions of 3,increasing the impact sensitivity and friction sensitivity from 1 J to 80 N(3-a)to 10 J and 240 N(3-b),respectively.Additionally,the crystal structural analyses and theoretical calculations were conducted to elucidate the reasons of differences between 3-a and 3-b in density and stability.This work provides an efficient strategy to enhance performance of trinitromethyl derivatives,broadening the path and expanding the toolbox for energetic materials.
文摘在理想环境下,双双曲调频(dual hyperbolic frequency modulation,Dual-HFM)速度谱估计方法可得到高分辨率的连续多普勒估计结果。然而由多径、双目标环境引起的旁瓣干扰,削弱了速度谱方法抑制噪声的能力,影响目标参数估计。针对该方法在多径、双目标等各种复杂水声环境中的应用,进行了深入的讨论,推导了多径、双目标造成的速度谱旁瓣位置,并提出了基于多帧信号的速度谱旁瓣抑制方法,利用另一维度信号空间中目标回波信息与多径杂波旁瓣的差异性,抑制了复杂水下环境中的速度谱旁瓣,并保留了速度谱计算量低的优点。通过数值仿真验证了所提方法的适用性,为低信噪比、多径、双目标环境下的多普勒估计提供了理论依据。