Focusing on the networked control system with long time-delays and data packet dropout,the problem of observerbased fault detection of the system is studied.According to conditions of data arrival of the controller,th...Focusing on the networked control system with long time-delays and data packet dropout,the problem of observerbased fault detection of the system is studied.According to conditions of data arrival of the controller,the state observers of the system are designed to detect faults when they occur in the system.When the system is normal,the observers system is modeled as an uncertain switched system.Based on the model,stability condition of the whole system is given.When conditions are satisfied,the system is asymptotically stable.When a fault occurs,the observers residual can change rapidly to detect the fault.A numerical example shows the effectiveness of the proposed method.展开更多
The globally exponential stability of nonlinear impul- sive networked control systems (NINCS) with time delay and packet dropouts is investigated. By applying Lyapunov function theory, sufficient conditions on the g...The globally exponential stability of nonlinear impul- sive networked control systems (NINCS) with time delay and packet dropouts is investigated. By applying Lyapunov function theory, sufficient conditions on the global exponential stability are derived by introducing a comparison system and estimating the corresponding Cauchy matrix. An impulsive controller is explicitly designed to achieve exponential stability and ensure state con- verge with a given decay rate for the system. The Lorenz oscillator system is presented as a numerical example to illustrate the theo- retical results and effectiveness of the proposed controller design procedure.展开更多
为保障电动车辆的可靠性和安全性,提出了一种dropout Monte Carlo(dropout-MC)递归神经网络的锂离子动力电池系统的剩余寿命(RUL)预测方法。以等电压充电时间间隔作为间接健康因子,考虑外部干扰和容量再生现象的影响,以变分模态分解(VMD...为保障电动车辆的可靠性和安全性,提出了一种dropout Monte Carlo(dropout-MC)递归神经网络的锂离子动力电池系统的剩余寿命(RUL)预测方法。以等电压充电时间间隔作为间接健康因子,考虑外部干扰和容量再生现象的影响,以变分模态分解(VMD)来获得电池退化趋势。以改进的递归神经网络模型——长短时间序列(LSTM)来获得剩余寿命预测。以dropout-MC采样方法来表征锂离子电池剩余寿命的不确定性,并获得锂离子电池RUL的95%置信区间。结果表明:相较于传统的极限学习机(ELM)方法和非线性自回归神经网络(NARX)方法,该文方法的剩余寿命预测性能指标均低于2.4%。因而,该方法具有优越的预测性能,且获得预测的置信区间。展开更多
目的基于传染病动力学SEAIQR(susceptible-exposed-asymptomatic-infected-quarantined-removed)模型和Dropout-LSTM(Dropout long short term memory network)模型预测西安市新型冠状病毒肺炎(COVID-19)疫情的发展趋势,为评估“动态清...目的基于传染病动力学SEAIQR(susceptible-exposed-asymptomatic-infected-quarantined-removed)模型和Dropout-LSTM(Dropout long short term memory network)模型预测西安市新型冠状病毒肺炎(COVID-19)疫情的发展趋势,为评估“动态清零”策略防控效果提供科学依据。方法考虑到西安市本轮疫情存在大量的无症状感染者、依时变化的参数以及采取的管控举措等特点,构建具有阶段性防控措施的时变SEAIQR模型。考虑到COVID-19疫情数据的时序性特征及它们之间的非线性关系,构建深度学习Dropout-LSTM模型。选用2021年12月9日-2022年1月31日西安市新增确诊病例数据进行拟合,用2022年2月1日-2022年2月7日数据评估预测效果,计算有效再生数(R_(t))并评价不同参数对疫情发展的影响。结果SEAIQR模型预测的新增确诊病例拐点预计在2021年12月26日出现,约为176例,疫情将于2022年1月24日实现“动态清零”,模型R^(2)=0.849。Dropout-LSTM模型能够体现数据的时序性与非线性特征,预测出的新增确诊病例数与实际情况高度吻合,R^(2)=0.937。Dropout-LSTM模型的MAE和RMSE均较SEAIQR模型低,说明预测结果更为理想。疫情暴发初期,R 0为5.63,自实施全面管控后,R_(t)呈逐渐下降趋势,直到2021年12月27日降至1.0以下。随着有效接触率不断缩小、管控措施的提早实施及免疫阈值的提高,新增确诊病例在到达拐点时的人数将会持续降低。结论建立的Dropout-LSTM模型实现了较准确的疫情预测,可为COVID-19疫情“动态清零”防控决策提供借鉴。展开更多
A kind of networked control system with network-induced delay and packet dropout, modeled on asynchronous dynamical systems was tested, and the integrity design of the networked control system with sensors failures an...A kind of networked control system with network-induced delay and packet dropout, modeled on asynchronous dynamical systems was tested, and the integrity design of the networked control system with sensors failures and actuators failures was analyzed using hybrid systems technique based on the robust fault-tolerant control theory. The parametric expression of controller is given based on the feasible solution of linear matrix inequality. The simulation results are provided on the basis of detailed theoretical analysis, which further demonstrate the validity of the proposed schema.展开更多
基金supported by the Natural Science Foundation of Jiangsu Province (BK2006202)
文摘Focusing on the networked control system with long time-delays and data packet dropout,the problem of observerbased fault detection of the system is studied.According to conditions of data arrival of the controller,the state observers of the system are designed to detect faults when they occur in the system.When the system is normal,the observers system is modeled as an uncertain switched system.Based on the model,stability condition of the whole system is given.When conditions are satisfied,the system is asymptotically stable.When a fault occurs,the observers residual can change rapidly to detect the fault.A numerical example shows the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (6090402060574006)the Research Fund for the Doctoral Program of Higher Eolucation of China (20070286039)
文摘The globally exponential stability of nonlinear impul- sive networked control systems (NINCS) with time delay and packet dropouts is investigated. By applying Lyapunov function theory, sufficient conditions on the global exponential stability are derived by introducing a comparison system and estimating the corresponding Cauchy matrix. An impulsive controller is explicitly designed to achieve exponential stability and ensure state con- verge with a given decay rate for the system. The Lorenz oscillator system is presented as a numerical example to illustrate the theo- retical results and effectiveness of the proposed controller design procedure.
文摘为保障电动车辆的可靠性和安全性,提出了一种dropout Monte Carlo(dropout-MC)递归神经网络的锂离子动力电池系统的剩余寿命(RUL)预测方法。以等电压充电时间间隔作为间接健康因子,考虑外部干扰和容量再生现象的影响,以变分模态分解(VMD)来获得电池退化趋势。以改进的递归神经网络模型——长短时间序列(LSTM)来获得剩余寿命预测。以dropout-MC采样方法来表征锂离子电池剩余寿命的不确定性,并获得锂离子电池RUL的95%置信区间。结果表明:相较于传统的极限学习机(ELM)方法和非线性自回归神经网络(NARX)方法,该文方法的剩余寿命预测性能指标均低于2.4%。因而,该方法具有优越的预测性能,且获得预测的置信区间。
文摘目的基于传染病动力学SEAIQR(susceptible-exposed-asymptomatic-infected-quarantined-removed)模型和Dropout-LSTM(Dropout long short term memory network)模型预测西安市新型冠状病毒肺炎(COVID-19)疫情的发展趋势,为评估“动态清零”策略防控效果提供科学依据。方法考虑到西安市本轮疫情存在大量的无症状感染者、依时变化的参数以及采取的管控举措等特点,构建具有阶段性防控措施的时变SEAIQR模型。考虑到COVID-19疫情数据的时序性特征及它们之间的非线性关系,构建深度学习Dropout-LSTM模型。选用2021年12月9日-2022年1月31日西安市新增确诊病例数据进行拟合,用2022年2月1日-2022年2月7日数据评估预测效果,计算有效再生数(R_(t))并评价不同参数对疫情发展的影响。结果SEAIQR模型预测的新增确诊病例拐点预计在2021年12月26日出现,约为176例,疫情将于2022年1月24日实现“动态清零”,模型R^(2)=0.849。Dropout-LSTM模型能够体现数据的时序性与非线性特征,预测出的新增确诊病例数与实际情况高度吻合,R^(2)=0.937。Dropout-LSTM模型的MAE和RMSE均较SEAIQR模型低,说明预测结果更为理想。疫情暴发初期,R 0为5.63,自实施全面管控后,R_(t)呈逐渐下降趋势,直到2021年12月27日降至1.0以下。随着有效接触率不断缩小、管控措施的提早实施及免疫阈值的提高,新增确诊病例在到达拐点时的人数将会持续降低。结论建立的Dropout-LSTM模型实现了较准确的疫情预测,可为COVID-19疫情“动态清零”防控决策提供借鉴。
基金This project was supported by the National Natural Science Foundation of China (60274014)Doctor Foundation of China Education Ministry (20020487006).
文摘A kind of networked control system with network-induced delay and packet dropout, modeled on asynchronous dynamical systems was tested, and the integrity design of the networked control system with sensors failures and actuators failures was analyzed using hybrid systems technique based on the robust fault-tolerant control theory. The parametric expression of controller is given based on the feasible solution of linear matrix inequality. The simulation results are provided on the basis of detailed theoretical analysis, which further demonstrate the validity of the proposed schema.