Advanced traveler information systems (ATIS) can not only improve drivers' accessibility to the more accurate route travel time information, but also can improve drivers' adaptability to the stochastic network cap...Advanced traveler information systems (ATIS) can not only improve drivers' accessibility to the more accurate route travel time information, but also can improve drivers' adaptability to the stochastic network capacity degradations. In this paper, a mixed stochastic user equilibrium model was proposed to describe the interactive route choice behaviors between ATIS equipped and unequipped drivers on a degradable transport network. In the proposed model the information accessibility of equipped drivers was reflected by lower degree of uncertainty in their stochastic equilibrium flow distributions, and their behavioral adaptability was captured by multiple equilibrium behaviors over the stochastic network state set. The mixed equilibrium model was formulated as a fixed point problem defined in the mixed route flows, and its solution was achieved by executing an iterative algorithm. Numerical experiments were provided to verify the properties of the mixed network equilibrium model and the efficiency of the iterative algorithm.展开更多
基金Projects(51378119,51578150)supported by the National Natural Science Foundation of China
文摘Advanced traveler information systems (ATIS) can not only improve drivers' accessibility to the more accurate route travel time information, but also can improve drivers' adaptability to the stochastic network capacity degradations. In this paper, a mixed stochastic user equilibrium model was proposed to describe the interactive route choice behaviors between ATIS equipped and unequipped drivers on a degradable transport network. In the proposed model the information accessibility of equipped drivers was reflected by lower degree of uncertainty in their stochastic equilibrium flow distributions, and their behavioral adaptability was captured by multiple equilibrium behaviors over the stochastic network state set. The mixed equilibrium model was formulated as a fixed point problem defined in the mixed route flows, and its solution was achieved by executing an iterative algorithm. Numerical experiments were provided to verify the properties of the mixed network equilibrium model and the efficiency of the iterative algorithm.
文摘识别非驾驶行为是提高驾驶安全性的重要手段之一。目前基于骨架序列和图像的融合识别方法具有计算量大和特征融合困难的问题。针对上述问题,本文提出一种基于多尺度骨架图和局部视觉上下文融合的驾驶员行为识别模型(skeleton-image based behavior recognition network,SIBBR-Net)。SIBBR-Net通过基于多尺度图的图卷积网络和基于局部视觉及注意力机制的卷积神经网络,充分提取运动和外观特征,较好地平衡了模型表征能力和计算量间的关系。基于手部运动的特征双向引导学习策略、自适应特征融合模块和静态特征空间上的辅助损失,使运动和外观特征间互相引导更新并实现自适应融合。最终在Drive&Act数据集进行算法测试,SIBBR-Net在动态标签和静态标签条件下的平均正确率分别为61.78%和80.42%,每秒浮点运算次数为25.92G,较最优方法降低了76.96%。