Bi3+ and Yb3+ codoped cubic Y2O3 phosphors are prepared by pechini sol-gel method. Strong near-infrared (NIR) emission around 980 nm from Yb3+ (2F5/2+2 F7/2) is observed under ultraviolet light excitation. A b...Bi3+ and Yb3+ codoped cubic Y2O3 phosphors are prepared by pechini sol-gel method. Strong near-infrared (NIR) emission around 980 nm from Yb3+ (2F5/2+2 F7/2) is observed under ultraviolet light excitation. A broad excitation band ranging from 320 to 360 nm, owing to the 6s2→6s6p transition of Bi3+ ions, is recorded when the Yb3+ emission is monitored, which suggests a very efficient energy transfer from Bi3+ ions to Yb3+ ions. The Yb3+ concentration dependences of both the Bi3+ and the Yb3+ emissions are investigated. The decay curve of Bi3+ emission under the excitation of 355 nm pulse laser is used to explore the Bi3+ →+Yb3+ energy transfer process. Cooperative energy transfer (CET) is discussed as a possible mechanism for the near-infrared emission.展开更多
A novel near-infrared (NIR) downconversion (DC) phosphor KSrPO4:Eu2+, Pr3+ is synthesized by the conventional high temperature solid-state reaction. The Eu2+ acts as an efficient sensitizer for Pr3+ in the KS...A novel near-infrared (NIR) downconversion (DC) phosphor KSrPO4:Eu2+, Pr3+ is synthesized by the conventional high temperature solid-state reaction. The Eu2+ acts as an efficient sensitizer for Pr3+ in the KSrPO4 host. With broad- band near-ultraviolet light excitation induced by the 4f→5d transition of Eu2+, the characteristic NIR emission of Pr3+, peaking at 974 nm and 1019 nm due to 3po →1G4 and 1G4→3H4 transitions, is generated as a result of the energy transfer from Eu2+ to Pr3+. The luminescence spectra in both the visible and the NIR regions and the decay lifetime curves of Eu2+ prove the energy transfer from Eu2+ to Pr3+. This Eu2+ and Pr3+ co-doped KSrPO4 phosphor may be a promising candidate to modify the spectral mismatch behavior of crystalline solar cells and sunlight.展开更多
基金supported by the National Nature Science Foundation of China (Grant No. 10774140)the Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KJCX2-YW-M11)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No. 20060358054)the Special Foundation for Talents of Anhui Province,China (GrantNo. 2007Z021)
文摘Bi3+ and Yb3+ codoped cubic Y2O3 phosphors are prepared by pechini sol-gel method. Strong near-infrared (NIR) emission around 980 nm from Yb3+ (2F5/2+2 F7/2) is observed under ultraviolet light excitation. A broad excitation band ranging from 320 to 360 nm, owing to the 6s2→6s6p transition of Bi3+ ions, is recorded when the Yb3+ emission is monitored, which suggests a very efficient energy transfer from Bi3+ ions to Yb3+ ions. The Yb3+ concentration dependences of both the Bi3+ and the Yb3+ emissions are investigated. The decay curve of Bi3+ emission under the excitation of 355 nm pulse laser is used to explore the Bi3+ →+Yb3+ energy transfer process. Cooperative energy transfer (CET) is discussed as a possible mechanism for the near-infrared emission.
基金Project supported by the National Natural Science Foundation of China (Grant No. 20976002)the Beijing Natural Science Foundation, China (Grant No. 2122012)the Special Funding of the Ministry of Education of Guangdong Province, China (Grant No. 2011B090400100)
文摘A novel near-infrared (NIR) downconversion (DC) phosphor KSrPO4:Eu2+, Pr3+ is synthesized by the conventional high temperature solid-state reaction. The Eu2+ acts as an efficient sensitizer for Pr3+ in the KSrPO4 host. With broad- band near-ultraviolet light excitation induced by the 4f→5d transition of Eu2+, the characteristic NIR emission of Pr3+, peaking at 974 nm and 1019 nm due to 3po →1G4 and 1G4→3H4 transitions, is generated as a result of the energy transfer from Eu2+ to Pr3+. The luminescence spectra in both the visible and the NIR regions and the decay lifetime curves of Eu2+ prove the energy transfer from Eu2+ to Pr3+. This Eu2+ and Pr3+ co-doped KSrPO4 phosphor may be a promising candidate to modify the spectral mismatch behavior of crystalline solar cells and sunlight.