We study the effect of waveguide thickness variations on the frequency spectrum of spontaneous parametric downconversion in the periodically-poled lithium niobate on insulator(LNOI)waveguide.We analyze several variati...We study the effect of waveguide thickness variations on the frequency spectrum of spontaneous parametric downconversion in the periodically-poled lithium niobate on insulator(LNOI)waveguide.We analyze several variation models and our simulation results show that thickness variations in several nanometers can induce distinct effects on the central peak of the spectrum,such as narrowing,broadening,and splitting.We also prove that the effects of positive and negative variations can be canceled and thus lead to a variation-robust feature and an ultra-broad bandwidth.Our study may promote the development of on-chip photon sources in the LNOI platform,as well as opens up a way to engineer photon frequency state.展开更多
Near-infrared single photon sources in telecommunication bands, especially at 1550 nm, are required for long-distance quantum communication. Here a down-conversion quantum interface is implemented, where the single ph...Near-infrared single photon sources in telecommunication bands, especially at 1550 nm, are required for long-distance quantum communication. Here a down-conversion quantum interface is implemented, where the single photons emitted from single In As quantum dot at 864 nm is down converted to 1552 nm by using a fiber-coupled periodically poled lithium niobate(PPLN) waveguide and a 1.95 μmm pump laser, and the frequency conversion efficiency is ~40%. The singlephoton purity of quantum dot emission is preserved during the down-conversion process, i.e., g^((2))(0), only 0.22 at 1552 nm.This present technique advances the Ⅲ-Ⅴ semiconductor quantum dots as a promising platform for long-distance quantum communication.展开更多
The decoy-state quantum key distribution protocol suggested by Adachi et al. (Phys. Rev. Lett 99 180503 (2007)) is proven to be secure and feasible with current techniques. It owns two attractive merits, i.e., its...The decoy-state quantum key distribution protocol suggested by Adachi et al. (Phys. Rev. Lett 99 180503 (2007)) is proven to be secure and feasible with current techniques. It owns two attractive merits, i.e., its longer secure transmission distance and more convenient operation design. In this paper, we first improve the protocol with the aid of local operation and two-way classical communication (2-LOCC). After our modifications, the secure transmission distance is increased by about 20 km, which will make the protocol more practicable.展开更多
A four-wavelength Bragg reflection waveguide edge emitting diode based on intracavity spontaneous parametric down-conversion and four-wave mixing (FWM) processes is made. The structure and its tuning characteris- ti...A four-wavelength Bragg reflection waveguide edge emitting diode based on intracavity spontaneous parametric down-conversion and four-wave mixing (FWM) processes is made. The structure and its tuning characteris- tic are designed by the aid of FDTD mode solution. The laser structure is grown by molecular beam epitaxy and processed to laser diode through the semiconductor manufacturing technology. Fourier transform infrared spectroscopy is applied to record wavelength information. Pump around 1.071 μm, signal around 1.77μm, idler around 2.71 μm and FWM signal around 1.35μm are observed at an injection current of 560mA. The influ- ences of temperature, carrier density and pump wavelength on tuning characteristic are shown numerically and experimentally.展开更多
In recent years, much attention has been paid to software-defined radio (SDR) technologies for multimode wireless systems SDR can be defined as a radio communication system that uses software to modulate and demodul...In recent years, much attention has been paid to software-defined radio (SDR) technologies for multimode wireless systems SDR can be defined as a radio communication system that uses software to modulate and demodulate radio signals. This article describes concepts, theory, and design principles for SDR down-conversion and up-conversion. Design issues in SDR down-conversion are discussed, and two different architectures, super-heterodyne and direct-conversion, are proposed. Design issues in SDR up-conversion are also discussed, and trade-offs in the design of filters, mixers, NCO, DAC, and signal processing are highlighted.展开更多
Parametric down-conversion(PDC) sources play an important role in quantum information processing, therefore characterizing their properties is necessary. Here we present a statistical model to assess the properties ...Parametric down-conversion(PDC) sources play an important role in quantum information processing, therefore characterizing their properties is necessary. Here we present a statistical model to assess the properties of the PDC source with certain distribution, such as the brightness and photon channel transmissions, we only need to measure the singles and coincidences counts in a few seconds. Furthermore, we validate the model by applying it to a PDC source generating highly non-degenerate photon pairs. The results of the experiment indicate that our method is more simple, efficient, and less time consuming.展开更多
Broadband photon pairs are highly desirable for quantum metrology,quantum sensing,and quantum communication.Such sources are usually designed through type-0 phase-matching spontaneous parametric down-conversion(SPDC)t...Broadband photon pairs are highly desirable for quantum metrology,quantum sensing,and quantum communication.Such sources are usually designed through type-0 phase-matching spontaneous parametric down-conversion(SPDC)that makes the photon pairs hard to separate in the frequency-degenerate case and thus limits their applications.In this paper,we design a broadband frequency-degenerate telecom-band photon pair source via the type-II SPDC in a dispersion-engineered thin-film lithium niobate waveguide,where the polarization modes of photon pairs are orthogonal and thus are easily separated deterministically.With a 5-mm-long waveguide,our design can achieve a bandwidth of 5.56 THz(44.8 nm),which is 8.6 times larger than that of the bulk lithium niobate,and the central wavelength can be flexibly adjusted.Our design is a promising approach towards high-quality integrated photon sources and may have wide applications in photonic quantum technologies.展开更多
We propose a simple scheme to generate an arbitrary photon-added coherent state of a travelling optical field by combining an array of degenerate parametric amplifiers and corresponding single-photon detectors. Partic...We propose a simple scheme to generate an arbitrary photon-added coherent state of a travelling optical field by combining an array of degenerate parametric amplifiers and corresponding single-photon detectors. Particularly, when the single-photon-added coherent state is observed by developing the novel technique of Zavatta et al (2004 Science 306 660), we can simultar/eously obtain the generalized N-qubit W state.展开更多
The cavity-enhanced spontaneous parametric down-conversion far below threshold can be used to generate a narrow-band photon pair efficiently. Previous experiments on the cavity-enhanced spontaneous parametric down- co...The cavity-enhanced spontaneous parametric down-conversion far below threshold can be used to generate a narrow-band photon pair efficiently. Previous experiments on the cavity-enhanced spontaneous parametric down- conversion almost always utilize continuous wave pump light, but the pulse pumped case is rarely reported. One disadvantage of the continuous wave case is that the photon pair is produced randomly within the coherence time of the pump, which limits its application in the quantum information realm. However, a pulse pump can help to solve this problem. In this paper, we theoretically analyze pulse pumped cavity-enhanced spontaneous parametric down- conversion in detail and show how the pump pulse affects the multi-photon interference visibility, two-photon waveform, joint spectrum and spectral brightness.展开更多
基金Project supported by the National Key R&D Program of China(Grant No.2019YFA0705000)Leading-edge Technology Program of Jiangsu Natural Science Foundation,China(Grant No.BK20192001)the National Natural Science Foundation of China(Grant Nos.51890861,11690031,11974178,and 11627810).
文摘We study the effect of waveguide thickness variations on the frequency spectrum of spontaneous parametric downconversion in the periodically-poled lithium niobate on insulator(LNOI)waveguide.We analyze several variation models and our simulation results show that thickness variations in several nanometers can induce distinct effects on the central peak of the spectrum,such as narrowing,broadening,and splitting.We also prove that the effects of positive and negative variations can be canceled and thus lead to a variation-robust feature and an ultra-broad bandwidth.Our study may promote the development of on-chip photon sources in the LNOI platform,as well as opens up a way to engineer photon frequency state.
基金Project supported by the National Key Technologies R&D Program of China(Grant No.2018YFA0306101)the Scientific Instrument Developing Project of Chinese Academy of Sciences(Grant No.YJKYYQ20170032)the National Natural Science Foundation of China(Grant No.61505196)
文摘Near-infrared single photon sources in telecommunication bands, especially at 1550 nm, are required for long-distance quantum communication. Here a down-conversion quantum interface is implemented, where the single photons emitted from single In As quantum dot at 864 nm is down converted to 1552 nm by using a fiber-coupled periodically poled lithium niobate(PPLN) waveguide and a 1.95 μmm pump laser, and the frequency conversion efficiency is ~40%. The singlephoton purity of quantum dot emission is preserved during the down-conversion process, i.e., g^((2))(0), only 0.22 at 1552 nm.This present technique advances the Ⅲ-Ⅴ semiconductor quantum dots as a promising platform for long-distance quantum communication.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 10905028/A050104)the Natural Science Foundation of Henan Province,China (Grant No. 092300410188)+1 种基金the Science Foundation of Hennan Provincial Education Department (Grant No. 2010A140010)Youth Fund of Luoyang Normal College
文摘The decoy-state quantum key distribution protocol suggested by Adachi et al. (Phys. Rev. Lett 99 180503 (2007)) is proven to be secure and feasible with current techniques. It owns two attractive merits, i.e., its longer secure transmission distance and more convenient operation design. In this paper, we first improve the protocol with the aid of local operation and two-way classical communication (2-LOCC). After our modifications, the secure transmission distance is increased by about 20 km, which will make the protocol more practicable.
基金Supported by the National Key Basic Research Program of China under Grant Nos 2013CB933304 and 2014CB643904the National Natural Science Foundation of China under Grant Nos 61435012 and 61274125the Strategic Priority Research Program(B) of Chinese Academy of Sciences under Grant No XDB01010200
文摘A four-wavelength Bragg reflection waveguide edge emitting diode based on intracavity spontaneous parametric down-conversion and four-wave mixing (FWM) processes is made. The structure and its tuning characteris- tic are designed by the aid of FDTD mode solution. The laser structure is grown by molecular beam epitaxy and processed to laser diode through the semiconductor manufacturing technology. Fourier transform infrared spectroscopy is applied to record wavelength information. Pump around 1.071 μm, signal around 1.77μm, idler around 2.71 μm and FWM signal around 1.35μm are observed at an injection current of 560mA. The influ- ences of temperature, carrier density and pump wavelength on tuning characteristic are shown numerically and experimentally.
文摘In recent years, much attention has been paid to software-defined radio (SDR) technologies for multimode wireless systems SDR can be defined as a radio communication system that uses software to modulate and demodulate radio signals. This article describes concepts, theory, and design principles for SDR down-conversion and up-conversion. Design issues in SDR down-conversion are discussed, and two different architectures, super-heterodyne and direct-conversion, are proposed. Design issues in SDR up-conversion are also discussed, and trade-offs in the design of filters, mixers, NCO, DAC, and signal processing are highlighted.
基金Project supported by the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(CAS)(Grant Nos.XDB01030100 and XDB01030300)the National Key Research and Development Program of China(Grant No.2016YFA0302600)the National Natural Science Foundation of China(Grant Nos.61475148 and 61575183)
文摘Parametric down-conversion(PDC) sources play an important role in quantum information processing, therefore characterizing their properties is necessary. Here we present a statistical model to assess the properties of the PDC source with certain distribution, such as the brightness and photon channel transmissions, we only need to measure the singles and coincidences counts in a few seconds. Furthermore, we validate the model by applying it to a PDC source generating highly non-degenerate photon pairs. The results of the experiment indicate that our method is more simple, efficient, and less time consuming.
基金Project supported by the National Key Research and Development Program of China(Grant No.2019YFA0705000)Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301500)+1 种基金Leading-edge Technology Program of Jiangsu Natural Science Foundation(Grant No.BK20192001)the National Natural Science Foundation of China(Grant Nos.51890861 and 11974178).
文摘Broadband photon pairs are highly desirable for quantum metrology,quantum sensing,and quantum communication.Such sources are usually designed through type-0 phase-matching spontaneous parametric down-conversion(SPDC)that makes the photon pairs hard to separate in the frequency-degenerate case and thus limits their applications.In this paper,we design a broadband frequency-degenerate telecom-band photon pair source via the type-II SPDC in a dispersion-engineered thin-film lithium niobate waveguide,where the polarization modes of photon pairs are orthogonal and thus are easily separated deterministically.With a 5-mm-long waveguide,our design can achieve a bandwidth of 5.56 THz(44.8 nm),which is 8.6 times larger than that of the bulk lithium niobate,and the central wavelength can be flexibly adjusted.Our design is a promising approach towards high-quality integrated photon sources and may have wide applications in photonic quantum technologies.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10304020 and 10474117), the State Key Development Program for Basic Research of China (Grant No 2001CB309309), and also in part by the Sunshine Project of Wuhan, China.
文摘We propose a simple scheme to generate an arbitrary photon-added coherent state of a travelling optical field by combining an array of degenerate parametric amplifiers and corresponding single-photon detectors. Particularly, when the single-photon-added coherent state is observed by developing the novel technique of Zavatta et al (2004 Science 306 660), we can simultar/eously obtain the generalized N-qubit W state.
基金supported by the National Natural Science Foundation of China(Grant No.10874171)the National Basic Research Program of China(Grant No.2009CB929601)+1 种基金the Innovation Fund from Chinese Academy of Sciencesthe Program for New Century Excellent Talents in University of China(Grant No.NCET-07-0791)
文摘The cavity-enhanced spontaneous parametric down-conversion far below threshold can be used to generate a narrow-band photon pair efficiently. Previous experiments on the cavity-enhanced spontaneous parametric down- conversion almost always utilize continuous wave pump light, but the pulse pumped case is rarely reported. One disadvantage of the continuous wave case is that the photon pair is produced randomly within the coherence time of the pump, which limits its application in the quantum information realm. However, a pulse pump can help to solve this problem. In this paper, we theoretically analyze pulse pumped cavity-enhanced spontaneous parametric down- conversion in detail and show how the pump pulse affects the multi-photon interference visibility, two-photon waveform, joint spectrum and spectral brightness.