An electron vortex beam(EVB) carrying orbital angular momentum(OAM) plays a key role in a series of fundamental scientific researches, such as chiral energy-loss spectroscopy and magnetic dichroism spectroscopy. So fa...An electron vortex beam(EVB) carrying orbital angular momentum(OAM) plays a key role in a series of fundamental scientific researches, such as chiral energy-loss spectroscopy and magnetic dichroism spectroscopy. So far, almost all the experimentally created EVBs manifest isotropic doughnut intensity patterns. Here, based on the correlation between local divergence angle of electron beam and phase gradient along azimuthal direction, we show that free electrons can be tailored to EVBs with customizable intensity patterns independent of the carried OAM. As proof-of-concept, by using computer generated hologram and designing phase masks to shape the incident free electrons in the transmission electron microscope, three structured EVBs carrying identical OAM are tailored to exhibit completely different intensity patterns. Furthermore, through the modal decomposition, we quantitatively investigate their OAM spectral distributions and reveal that structured EVBs present a superposition of a series of different eigenstates induced by the locally varied geometries. These results not only generalize the concept of EVB, but also demonstrate an extra highly controllable degree of freedom for electron beam manipulation in addition to OAM.展开更多
Surface segregation is studied via the evolution of reflection high-energy electron diffraction (RHEED) patterns under different values of As4 BEP for InGaAs films. When the As4 BEP is set to be zero, the RHEED patt...Surface segregation is studied via the evolution of reflection high-energy electron diffraction (RHEED) patterns under different values of As4 BEP for InGaAs films. When the As4 BEP is set to be zero, the RHEED pattern keeps a 4x3/(nx3) structure with increasing temperature, and surface segregation takes place until 470 ℃ The RHEED pattern develops into a metal-rich (4x2) structure as temperature increases to 495℃. The reason for this is that surface segregation makes the In inside the InGaAs film climb to its surface. With the temperature increasing up to 515℃, the RHEED pattern turns into a GaAs(2x4) structure due to In desorption. While the As4 BEP comes up to a specific value (1.33 x 10-4 Pa-1.33 x 10-3 Pa), the surface temperature can delay the segregation and desorption. We find that As4 BEP has a big influence on surface desorption, while surface segregation is more strongly dependent on temperature than surface desorption.展开更多
Reactive deposition epitaxial growth ofβ-FeSi_(2) film on Si(001)has been studied by in situ observation of reflective high energy electron diffraction.Metastable strained phase was observed at initial stages.Surface...Reactive deposition epitaxial growth ofβ-FeSi_(2) film on Si(001)has been studied by in situ observation of reflective high energy electron diffraction.Metastable strained phase was observed at initial stages.Surface roughness due to the islanding was observed during the deposition.The existed great tendency to transform the alignment of the orientation of crystallites into random as the thickness of deposited iron increased.展开更多
Ultrafast electron diffraction (UED) technique has proven to be an innovative tool for providing new insights in lattice dynamics with unprecedented temporal and spatial sensitivities. In this article, we give a bri...Ultrafast electron diffraction (UED) technique has proven to be an innovative tool for providing new insights in lattice dynamics with unprecedented temporal and spatial sensitivities. In this article, we give a brief introduction of this technique using the proposed UED station in the Synergetic Extreme Condition User Facility (SECUF) as a prototype. We briefly discussed UED's functionality, working principle, design consideration, and main components. We also briefly reviewed several pioneer works with UED to study structure-function correlations in several research areas. With these efforts, we endeavor to raise the awareness of this tool among those researchers, who may not yet have realized the emerging opportunities offered by this technique.展开更多
Wave-particle duality is one of the most fundamental and mysterious natures of matters. Here, we present an interesting scheme of isolated electron wave packet diffraction with a few-cycle laser pulse and an extreme u...Wave-particle duality is one of the most fundamental and mysterious natures of matters. Here, we present an interesting scheme of isolated electron wave packet diffraction with a few-cycle laser pulse and an extreme ultraviolet (XUV) pulse. The diffraction fringes are clearly present in the laser dressed XUV photoelectron spectra, strongly resembling the Airy diffraction pattern of optical waves. This phenomenon suggests a great potential of attosecond diffractometry. According to this scheme we also propose a simple method to determine the XUV pulse duration from the photoelectron spectra with a rather high resolution.展开更多
Five-fold twinned nanostructures are intrinsically strained or relaxed by extended defects to satisfy the space-filling requirement.Although both of metallic and semiconductor five-fold twinned nanostructures show inh...Five-fold twinned nanostructures are intrinsically strained or relaxed by extended defects to satisfy the space-filling requirement.Although both of metallic and semiconductor five-fold twinned nanostructures show inhomogeneity in their cross-sectional strain distribution,the evident strain concentration at twin boundaries in the semiconductor systems has been found in contrast to the metallic systems.Naturally,a problem is raised how the chemical bonding characteristics of various five-fold twinned nanosystems affects their strain-relieving defect structures.Here using three-dimensional(3D)electron diffraction mapping methodology,the intrinsic strain and the strain-relieving defects in a pentagonal Ag nanowire and a star-shaped boron carbide nanowire,both of them have basically equal radial twin-plane width about 30 nm,are nondestructively characterized.The non-uniform strain and defect distribution between the five single crystalline segments are found in both of the five-fold twinned nanowires.Diffraction intensity fine structure analysis for the boron carbide five-fold twinned nanowire indicates the presence of high-density of planar defects which are responsible for the accommodation of the intrinsic angular excess.However,for the Ag five-fold twinned nanowire,the star-disclination strain field is still present,although is partially relieved by the formation of localized stacking fault layers accompanied by partial dislocations.Energetic analysis suggests that the variety in the strain-relaxation ways for the two types of five-fold twinned nanowires could be ascribed to the large difference in shear modulus between the soft noble metal Ag and the superhard covalent compound boron carbide.展开更多
To integrate a terahertz pump into an ultrafast electron diffraction(UED)experiment has attracted much attention due to its potential to initiate and detect the structural dynamics both directly.However,the deflection...To integrate a terahertz pump into an ultrafast electron diffraction(UED)experiment has attracted much attention due to its potential to initiate and detect the structural dynamics both directly.However,the deflection of the electron probe by the electromagnetic field of the terahertz pump alters the incident angle of the electron probe on the sample,impeding it from recording structural information afterwards.In this article,we studied this issue by a theoretical simulation of the terahertz-induced deflection effect on the electron probe,and came up with several possible schemes to reduce such effect.As a result,a terahertz-pump-electron-probe UED experiment with a temporal resolution comparable to the terahertz period is realized.We also found that Me V UED was more suitable for such terahertz pump experiment.展开更多
Directly resolving structural changes in material on the atomic scales of time and space is desired in studies of many disciplines.Ultrafast electron diffraction(UED),which combines the temporal resolution of femtosec...Directly resolving structural changes in material on the atomic scales of time and space is desired in studies of many disciplines.Ultrafast electron diffraction(UED),which combines the temporal resolution of femtosecond-pulse laser and the spatial sensitivity of electron diffraction,is an advancing methodology serving such a goal.Here we present the design of a UED apparatus with multiple operation modes for observation of collective atomic motions in solid material of various morphologies.This multi-mode UED employs a pulsed electron beam with propagation trajectory of parallel and convergent incidences,and diffraction configurations of transmission and reflection,as well utilities of preparation and characterization of cleaned surface and adsorbates.We recorded the process of electron-phonon coupling in single crystal molybdenum ditelluride following excitation of femtosecond laser pulses,and diffraction patterns of polycrystalline graphite thin film under different settings of electron optics,to demonstrate the temporal characteristics and tunable probe spot of the built UED apparatus,respectively.展开更多
The Shanghai soft X-ray free-electron laser(SXFEL)user facility project started in 2016 and is expected to be open to users by 2022.It aims to deliver ultra-intense coherent femtosecond X-ray pulses to five endstation...The Shanghai soft X-ray free-electron laser(SXFEL)user facility project started in 2016 and is expected to be open to users by 2022.It aims to deliver ultra-intense coherent femtosecond X-ray pulses to five endstations covering a range of 100–620 eV for ultrafast X-ray science.Two undulator lines are designed and constructed,based on different lasing modes:self-amplified spontaneous emission and echo-enabled harmonic generation.The coherent scattering and imaging(CSI)endstation is the first of five endstations to be commissioned online.It focuses on high-resolution single-shot imaging and the study of ultrafast dynamic processes using coherent forward scattering techniques.Both the single-shot holograms and coherent diffraction patterns were recorded and reconstructed for nanoscale imaging,indicating the excellent coherence and high peak power of the SXFEL and the possibility of‘‘diffraction before destruction’’experiments at the CSI endstation.In this study,we report the first commissioning results of the CSI endstation.展开更多
A method is proposed to determine the temporal width of high-brightness radio-frequency compressed electron pulses based on cross-correlation technique involving electron bunches and laser-induced plasma. The temporal...A method is proposed to determine the temporal width of high-brightness radio-frequency compressed electron pulses based on cross-correlation technique involving electron bunches and laser-induced plasma. The temporal evolution of 2-dimensional transverse profile of ultrafast electron bunches repelled by the formed transient electric field of laser-induced plasma on a silver needle is investigated, and the pulse-width can be obtained by analyzing these time-dependent images.This approach can characterize radio-frequency compressed ultrafast electron bunches with picosecond or sub-picosecond timescale and up to 105 electron numbers.展开更多
An ultrafast electron diffraction technique with both high temporal and spatial resolution has been shown to be a powerful tool to observe the material transient structural change on an atomic scale.The space charge f...An ultrafast electron diffraction technique with both high temporal and spatial resolution has been shown to be a powerful tool to observe the material transient structural change on an atomic scale.The space charge forces in a multi-electron bunch will greatly broaden the electron pulse width,and therefore limit the temporal resolution of the high brightness electron pulse.Here in this work,we design an ultrafast electron diffraction system,and utilize a radio frequency cavity to realize the ultrafast electron pulse compression.We experimentally demonstrate that the stretched electron pulse width of14.98 ps with an electron energy of 40 keV and the electron number of 1.0 ×10;can be maximally compressed to about0.61 ps for single-pulse measurement and 2.48 ps for multi-pulse measurement by using a 3.2-GHz radiofrequency cavity.We also theoretically and experimentally analyze the parameters influencing the electron pulse compression efficiency for single-and multi-pulse measurements by considering radiofrequency field time jitter,electron pulse time jitter and their relative time jitter.We suggest that increasing the electron energy or shortening the distance between the compression cavity and the streak cavity can further improve the electron pulse compression efficiency.These experimental and theoretical results are very helpful for designing the ultrafast electron diffraction experiment equipment and compressing the ultrafast electron pulse width in a future study.展开更多
Recent advances in the ultrafast transmission electron microscope (UTEM), with combined spatial and temporal resolutions, have made it possible to directly visualize the atomic, electronic, and magnetic structural d...Recent advances in the ultrafast transmission electron microscope (UTEM), with combined spatial and temporal resolutions, have made it possible to directly visualize the atomic, electronic, and magnetic structural dynamics of materials. In this review, we highlight the recent progress of UTEM techniques and their applications to a variety of material systems. It is emphasized that numerous significant ultrafast dynamic issues in material science can be solved by the integration of the pump-probe approach with the well-developed conventional transmission electron microscopy (TEM) techniques. For instance, UTEM diffraction experiments can be performed to investigate photoinduced atomic-scale dynamics, including the chemical reactions, non-equilibrium phase transition/melting, and lattice phonon coupling. UTEM imaging methods are invaluable for studying, in real space, the elementary processes of structural and morphological changes, as well as magnetic-domain evolution in the Lorentz TEM mode, at a high magnification. UTEM electron energy-loss spectroscopic techniques allow the examination of the ultrafast valence states and electronic structure dynamics, while photoinduced near-field electron microscopy extends the capability of the UTEM to the regime of electromagnetic-field imaging with a high real space resolution.展开更多
Electron magnetic circular dichroism opens a new door to explore magnetic properties by transmitted electrons in the transmission electron microscope. However, obtaining quantitative magnetic parameters, such as spin ...Electron magnetic circular dichroism opens a new door to explore magnetic properties by transmitted electrons in the transmission electron microscope. However, obtaining quantitative magnetic parameters, such as spin and orbital magnetic moment with element-specificity, goes a long way along with the development and improvement of this technique both in theoretical and experimental aspects. In this review, we will give a detailed description of the quantitative electron magnetic circular dichroism(EMCD) technique to measure magnetic parameters with spin-specificity, element-specificity,site-specificity, and orbital-spin-specificity. The discussion completely contains the procedures from raw experimental data acquisition to final magnetic parameters, together with the related custom code we have developed.展开更多
A novel instrument that integrates reflection high energy electron diffraction(RHEED),electron energy loss spectroscopy(EELS),and imaging is designed and simulated.Since it can correlate the structural,elemental,and s...A novel instrument that integrates reflection high energy electron diffraction(RHEED),electron energy loss spectroscopy(EELS),and imaging is designed and simulated.Since it can correlate the structural,elemental,and spatial information of the same surface region via the simultaneously acquired patterns of RHEED,EELS,and energy-filtered electron microscopy,it is named correlative reflection electron microscopy(c-REM).Our simulation demonstrates that the spatial resolution of this c-REM is lower than 50 nm,which meets the requirements for in-situ monitoring the structural and chemical evolution of surface in advanced material.展开更多
基金This work is supported in part by the Key Research and Development Program from Ministry of Science and Technology of China(2022YFA1205000)National Natural Science Foundation of China(12274217 and 62105142)+1 种基金Natural Science Foundation of Jiangsu Province(BK20220068 and BK20212004)Fundamental Research Funds for Central Universities.
文摘An electron vortex beam(EVB) carrying orbital angular momentum(OAM) plays a key role in a series of fundamental scientific researches, such as chiral energy-loss spectroscopy and magnetic dichroism spectroscopy. So far, almost all the experimentally created EVBs manifest isotropic doughnut intensity patterns. Here, based on the correlation between local divergence angle of electron beam and phase gradient along azimuthal direction, we show that free electrons can be tailored to EVBs with customizable intensity patterns independent of the carried OAM. As proof-of-concept, by using computer generated hologram and designing phase masks to shape the incident free electrons in the transmission electron microscope, three structured EVBs carrying identical OAM are tailored to exhibit completely different intensity patterns. Furthermore, through the modal decomposition, we quantitatively investigate their OAM spectral distributions and reveal that structured EVBs present a superposition of a series of different eigenstates induced by the locally varied geometries. These results not only generalize the concept of EVB, but also demonstrate an extra highly controllable degree of freedom for electron beam manipulation in addition to OAM.
基金supported by the National Natural Science Foundation of China (Grant No. 60866001)the Special Assistant to High-Level Personnel Research Projects of Guizhou Provincial Party Committee Organization Department of China (Grant No. TZJF- 2008-31)+3 种基金the Support Plan of New Century Excellent Talents of Ministry of Education, China (Grant No. NCET-08-0651)the Doctorate Foundation of the State Education Ministry of China (Grant No. 20105201110003)the Special Governor Fund of Outstanding Professionals in Science and Technology and Education of Guizhou Province, China (Grant No. 2009114)the Doctoral Foundation Projects of Guizhou College of Finance and Economics in 2010
文摘Surface segregation is studied via the evolution of reflection high-energy electron diffraction (RHEED) patterns under different values of As4 BEP for InGaAs films. When the As4 BEP is set to be zero, the RHEED pattern keeps a 4x3/(nx3) structure with increasing temperature, and surface segregation takes place until 470 ℃ The RHEED pattern develops into a metal-rich (4x2) structure as temperature increases to 495℃. The reason for this is that surface segregation makes the In inside the InGaAs film climb to its surface. With the temperature increasing up to 515℃, the RHEED pattern turns into a GaAs(2x4) structure due to In desorption. While the As4 BEP comes up to a specific value (1.33 x 10-4 Pa-1.33 x 10-3 Pa), the surface temperature can delay the segregation and desorption. We find that As4 BEP has a big influence on surface desorption, while surface segregation is more strongly dependent on temperature than surface desorption.
基金Supported by the National Natural Science Foundation of Shanghai,the People's Republic of China,No.94JC14006.
文摘Reactive deposition epitaxial growth ofβ-FeSi_(2) film on Si(001)has been studied by in situ observation of reflective high energy electron diffraction.Metastable strained phase was observed at initial stages.Surface roughness due to the islanding was observed during the deposition.The existed great tendency to transform the alignment of the orientation of crystallites into random as the thickness of deposited iron increased.
基金Project supported by the National Natural Science Foundation of China(Grant No.11774409)the National Basic Research Program of China(Grant No.2013CBA01501)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDB16010200 and XDB07030300)
文摘Ultrafast electron diffraction (UED) technique has proven to be an innovative tool for providing new insights in lattice dynamics with unprecedented temporal and spatial sensitivities. In this article, we give a brief introduction of this technique using the proposed UED station in the Synergetic Extreme Condition User Facility (SECUF) as a prototype. We briefly discussed UED's functionality, working principle, design consideration, and main components. We also briefly reviewed several pioneer works with UED to study structure-function correlations in several research areas. With these efforts, we endeavor to raise the awareness of this tool among those researchers, who may not yet have realized the emerging opportunities offered by this technique.
基金Project supported by the National Natural Science Foundation of China (Grant No.11005088)the Basic and Advanced Technology of Henan Province of China (Grant No.102300410241)the Scientific Research Foundation of Education Department of Henan Province of China (Grant Nos.2009A140006 and 20116140018)
文摘Wave-particle duality is one of the most fundamental and mysterious natures of matters. Here, we present an interesting scheme of isolated electron wave packet diffraction with a few-cycle laser pulse and an extreme ultraviolet (XUV) pulse. The diffraction fringes are clearly present in the laser dressed XUV photoelectron spectra, strongly resembling the Airy diffraction pattern of optical waves. This phenomenon suggests a great potential of attosecond diffractometry. According to this scheme we also propose a simple method to determine the XUV pulse duration from the photoelectron spectra with a rather high resolution.
基金National Natural Science Foundation of China(Grant Nos.51201015 and U1532262).
文摘Five-fold twinned nanostructures are intrinsically strained or relaxed by extended defects to satisfy the space-filling requirement.Although both of metallic and semiconductor five-fold twinned nanostructures show inhomogeneity in their cross-sectional strain distribution,the evident strain concentration at twin boundaries in the semiconductor systems has been found in contrast to the metallic systems.Naturally,a problem is raised how the chemical bonding characteristics of various five-fold twinned nanosystems affects their strain-relieving defect structures.Here using three-dimensional(3D)electron diffraction mapping methodology,the intrinsic strain and the strain-relieving defects in a pentagonal Ag nanowire and a star-shaped boron carbide nanowire,both of them have basically equal radial twin-plane width about 30 nm,are nondestructively characterized.The non-uniform strain and defect distribution between the five single crystalline segments are found in both of the five-fold twinned nanowires.Diffraction intensity fine structure analysis for the boron carbide five-fold twinned nanowire indicates the presence of high-density of planar defects which are responsible for the accommodation of the intrinsic angular excess.However,for the Ag five-fold twinned nanowire,the star-disclination strain field is still present,although is partially relieved by the formation of localized stacking fault layers accompanied by partial dislocations.Energetic analysis suggests that the variety in the strain-relaxation ways for the two types of five-fold twinned nanowires could be ascribed to the large difference in shear modulus between the soft noble metal Ag and the superhard covalent compound boron carbide.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11774409,11827807,and92050106)supported by the Synergic Extreme Condition User Facility。
文摘To integrate a terahertz pump into an ultrafast electron diffraction(UED)experiment has attracted much attention due to its potential to initiate and detect the structural dynamics both directly.However,the deflection of the electron probe by the electromagnetic field of the terahertz pump alters the incident angle of the electron probe on the sample,impeding it from recording structural information afterwards.In this article,we studied this issue by a theoretical simulation of the terahertz-induced deflection effect on the electron probe,and came up with several possible schemes to reduce such effect.As a result,a terahertz-pump-electron-probe UED experiment with a temporal resolution comparable to the terahertz period is realized.We also found that Me V UED was more suitable for such terahertz pump experiment.
基金Project supported by the Director Fund of WNLO (Grant No. WNLOZZYJ1501)the Fundamental Research Funds for the Central Universities,HUST (Grant No. 2017KFXKJC001)+1 种基金the Innovation Fund of WNLOthe Fund of State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics(Grant No. T152012)
文摘Directly resolving structural changes in material on the atomic scales of time and space is desired in studies of many disciplines.Ultrafast electron diffraction(UED),which combines the temporal resolution of femtosecond-pulse laser and the spatial sensitivity of electron diffraction,is an advancing methodology serving such a goal.Here we present the design of a UED apparatus with multiple operation modes for observation of collective atomic motions in solid material of various morphologies.This multi-mode UED employs a pulsed electron beam with propagation trajectory of parallel and convergent incidences,and diffraction configurations of transmission and reflection,as well utilities of preparation and characterization of cleaned surface and adsorbates.We recorded the process of electron-phonon coupling in single crystal molybdenum ditelluride following excitation of femtosecond laser pulses,and diffraction patterns of polycrystalline graphite thin film under different settings of electron optics,to demonstrate the temporal characteristics and tunable probe spot of the built UED apparatus,respectively.
基金the Shanghai Soft X-ray Free-Electron Laser Facility beamline projectionfunded by the Major State Basic Research Development Program of China(No.2017YFA0504802)+1 种基金Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB 37040303)National Natural Science Foundation of China(No.21727817).
文摘The Shanghai soft X-ray free-electron laser(SXFEL)user facility project started in 2016 and is expected to be open to users by 2022.It aims to deliver ultra-intense coherent femtosecond X-ray pulses to five endstations covering a range of 100–620 eV for ultrafast X-ray science.Two undulator lines are designed and constructed,based on different lasing modes:self-amplified spontaneous emission and echo-enabled harmonic generation.The coherent scattering and imaging(CSI)endstation is the first of five endstations to be commissioned online.It focuses on high-resolution single-shot imaging and the study of ultrafast dynamic processes using coherent forward scattering techniques.Both the single-shot holograms and coherent diffraction patterns were recorded and reconstructed for nanoscale imaging,indicating the excellent coherence and high peak power of the SXFEL and the possibility of‘‘diffraction before destruction’’experiments at the CSI endstation.In this study,we report the first commissioning results of the CSI endstation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11004060,11027403,and 11304224)the Shanghai Municipal Science and Technology Commission,China(Grant Nos.10XD1401800,09142200501,09ZR1409300,09JC1404700,and 10JC1404500)
文摘A method is proposed to determine the temporal width of high-brightness radio-frequency compressed electron pulses based on cross-correlation technique involving electron bunches and laser-induced plasma. The temporal evolution of 2-dimensional transverse profile of ultrafast electron bunches repelled by the formed transient electric field of laser-induced plasma on a silver needle is investigated, and the pulse-width can be obtained by analyzing these time-dependent images.This approach can characterize radio-frequency compressed ultrafast electron bunches with picosecond or sub-picosecond timescale and up to 105 electron numbers.
基金Project partially supported by the National Natural Science Foundation of China(Grant Nos.51132004 and 11474096)the Fund from the Science and Technology Commission of Shanghai Municipality,China(Gant No.14JC1401500)the NYU-ECNU Institute of Physics at NYU Shanghai,China
文摘An ultrafast electron diffraction technique with both high temporal and spatial resolution has been shown to be a powerful tool to observe the material transient structural change on an atomic scale.The space charge forces in a multi-electron bunch will greatly broaden the electron pulse width,and therefore limit the temporal resolution of the high brightness electron pulse.Here in this work,we design an ultrafast electron diffraction system,and utilize a radio frequency cavity to realize the ultrafast electron pulse compression.We experimentally demonstrate that the stretched electron pulse width of14.98 ps with an electron energy of 40 keV and the electron number of 1.0 ×10;can be maximally compressed to about0.61 ps for single-pulse measurement and 2.48 ps for multi-pulse measurement by using a 3.2-GHz radiofrequency cavity.We also theoretically and experimentally analyze the parameters influencing the electron pulse compression efficiency for single-and multi-pulse measurements by considering radiofrequency field time jitter,electron pulse time jitter and their relative time jitter.We suggest that increasing the electron energy or shortening the distance between the compression cavity and the streak cavity can further improve the electron pulse compression efficiency.These experimental and theoretical results are very helpful for designing the ultrafast electron diffraction experiment equipment and compressing the ultrafast electron pulse width in a future study.
基金Project supported by the National Basic Research Program of China(Grant No.2015CB921300)the National Key Research and Development Program of China(Grant Nos.2016YFA0300300,2017YFA0504703,and 2017YFA0302900)+3 种基金the National Natural Science Foundation of China(Grant Nos.11604372,11474323,and 11774391)the”Strategic Priority Research Program(B)”of the Chinese Academy of Sciences(Grant No.XDB07020000)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(Grant No.ZDKYYQ20170002)the financial support of the Hundred Talent Program B from CAS
文摘Recent advances in the ultrafast transmission electron microscope (UTEM), with combined spatial and temporal resolutions, have made it possible to directly visualize the atomic, electronic, and magnetic structural dynamics of materials. In this review, we highlight the recent progress of UTEM techniques and their applications to a variety of material systems. It is emphasized that numerous significant ultrafast dynamic issues in material science can be solved by the integration of the pump-probe approach with the well-developed conventional transmission electron microscopy (TEM) techniques. For instance, UTEM diffraction experiments can be performed to investigate photoinduced atomic-scale dynamics, including the chemical reactions, non-equilibrium phase transition/melting, and lattice phonon coupling. UTEM imaging methods are invaluable for studying, in real space, the elementary processes of structural and morphological changes, as well as magnetic-domain evolution in the Lorentz TEM mode, at a high magnification. UTEM electron energy-loss spectroscopic techniques allow the examination of the ultrafast valence states and electronic structure dynamics, while photoinduced near-field electron microscopy extends the capability of the UTEM to the regime of electromagnetic-field imaging with a high real space resolution.
文摘Electron magnetic circular dichroism opens a new door to explore magnetic properties by transmitted electrons in the transmission electron microscope. However, obtaining quantitative magnetic parameters, such as spin and orbital magnetic moment with element-specificity, goes a long way along with the development and improvement of this technique both in theoretical and experimental aspects. In this review, we will give a detailed description of the quantitative electron magnetic circular dichroism(EMCD) technique to measure magnetic parameters with spin-specificity, element-specificity,site-specificity, and orbital-spin-specificity. The discussion completely contains the procedures from raw experimental data acquisition to final magnetic parameters, together with the related custom code we have developed.
基金Project supported by the Shanghai Tech University and the National Natural Science Foundation of China(Grant No.11774039)。
文摘A novel instrument that integrates reflection high energy electron diffraction(RHEED),electron energy loss spectroscopy(EELS),and imaging is designed and simulated.Since it can correlate the structural,elemental,and spatial information of the same surface region via the simultaneously acquired patterns of RHEED,EELS,and energy-filtered electron microscopy,it is named correlative reflection electron microscopy(c-REM).Our simulation demonstrates that the spatial resolution of this c-REM is lower than 50 nm,which meets the requirements for in-situ monitoring the structural and chemical evolution of surface in advanced material.