Due to technical limitations,existing vibration isolation and energy harvesting(VIEH)devices have poor performance at low frequency.This paper proposes a new multilink-spring mechanism(MLSM)that can be used to solve t...Due to technical limitations,existing vibration isolation and energy harvesting(VIEH)devices have poor performance at low frequency.This paper proposes a new multilink-spring mechanism(MLSM)that can be used to solve this problem.The VIEH performance of the MLSM under harmonic excitation and Gaussian white noise was analyzed.It was found that the MLSM has good vibration isolation performance for low-frequency isolation and the frequency band can be widened by adjusting parameters to achieve a higher energy harvesting power.By comparison with two special cases,the results show that the MLSM is basically the same as the other two oscillators in terms of vibration isolation but has better energy harvesting performance under multistable characteristics.The MLSM is expected to reduce the impact of vibration on high-precision sensitive equipment in some special sites such as subways and mines,and at the same time supply power to structural health monitoring devices.展开更多
High-static-low-dynamic stiffness (HSLDS) vibration isolators have been demonstrated to be an effective means of attenuating low-frequency vibrations, and may be utilized for ship shafting applications to mitigate tor...High-static-low-dynamic stiffness (HSLDS) vibration isolators have been demonstrated to be an effective means of attenuating low-frequency vibrations, and may be utilized for ship shafting applications to mitigate torsional vibration. This paper presents the construction of a highly compact HSLDS torsional vibration isolator by connecting positive and negative stiffness components in paral lel. Based on mechanical model analysis, the restoring torque of negative stiffness components is de rived from their springs and connecting rods, while that of positive stiffness components is obtained through their circular section flexible rods. The quasizero stiffness characteristics of the HSLDS iso lator are achieved through a combination of static structural simulation and experimental test. The tor sional vibration isolation performance is assessed by means of numerical simulation and theory analy sis. Finally, the frequency-sweep vibration test is conducted. The test results indicate that the HSLDS torsional vibration isolator exhibits superior low-frequency isolation performance compared to its linear counterpart, rendering it a promising solution for mitigating low-frequency torsional vi bration in ship shafting.展开更多
Rigid blocking masses are located in the typical base structure of a power cabin based on the impedance mismatch principle.By combining the acoustic-structural coupling method and statistical energy analysis,the full-...Rigid blocking masses are located in the typical base structure of a power cabin based on the impedance mismatch principle.By combining the acoustic-structural coupling method and statistical energy analysis,the full-band vibration and sound radiation reduction effect of vibration isolation masses located in a base structure was researched.The influence of the blocking mass’ cross-section size and shape parameters and the layout location of the base isolation performance was discussed.Furthermore,the effectiveness of rigid vibration isolation design of the base structure was validated.The results show that the medium and high frequency vibration and sound radiation of a power cabin are effectively reduced by a blocking mass.Concerning weight increment and section requirement,suitably increasing the blocking mass size and section height and reducing section width can result in an efficiency-cost ratio.展开更多
In considering the theory of structural dynamic optimization design, a design method of the structural style of ship composite brace with rigid vibration isolation mass was studied. Two kinds of structural dynamic opt...In considering the theory of structural dynamic optimization design, a design method of the structural style of ship composite brace with rigid vibration isolation mass was studied. Two kinds of structural dynamic optimization formulations minimizing the vibration acceleration of the non-pressure hull on the restraining condition of the gross weight of the ship cabin were established: 1) dynamic optimization of the sectional dimensions of the rigid vibration isolation mass in the composite brace; 2) dynamic optimization of the arranging position of the rigid vibration isolation mass. Through the optimization results, sectional dimensions and the arranging position of the rigid vibration isolation mass with better performance in reducing vibration were gained, and some reference was provided for practical engineering designs as well as enrichment of the design method of a novel ship vibration-isolation brace.展开更多
A feedforword neural network of multi-layer topologies for systems with hysteretic nonlinearity is constructed based on Bouce Wen differential model. It not only reflects the hysteresis force characteristics of the Bo...A feedforword neural network of multi-layer topologies for systems with hysteretic nonlinearity is constructed based on Bouce Wen differential model. It not only reflects the hysteresis force characteristics of the Bouce Wen model, but also determines its corresponding parameters. The simulation results show that restoring forceedisplacement curve hysteresis loop is very close to the real curve. The model trained can accurately predict the time response of system. The model is checked under the noise level. The result shows that the model has higher modeling precision, good generalization capability and a certain anti-interference ability.展开更多
To obtain a longer natural period in single degree of freedom(SDF) conservative vibration isolation systems, many scholars have proposed different methods. This paper uncovers a clockwise energy cycle existing in a ma...To obtain a longer natural period in single degree of freedom(SDF) conservative vibration isolation systems, many scholars have proposed different methods. This paper uncovers a clockwise energy cycle existing in a mass-spring system, in which the potential energy and kinetic energy convert with each other, and the natural period is determined by the magnitude of the energy cycle. Compared to water flow inside a pipe, the previous methods can be consolidated into two methods to make the energy cycle narrower;one is to optimize the parameters directly, the other is to indirectly add an anticlockwise energy cycle to the original one. The anticlockwise energy cycle has the characteristic of gravitational potential energy or elastic potential energy that reduces with displacement. The highly abstract method can provide a better optimization tool to design a practice system.展开更多
Based on the principle of impedance mismatching,the performance of rigid vibration isolation mass in impeding vibration wave propagation was discussed from the perspective of wave approach.Based on FEM,the influence o...Based on the principle of impedance mismatching,the performance of rigid vibration isolation mass in impeding vibration wave propagation was discussed from the perspective of wave approach.Based on FEM,the influence of its weight as well as the cross-section shape parameters on the isolation performance of rigid vibration isolation mass was studied through numerical simulation.The results show that rigid vibration isolation mass can effectively impede the propagation of the medium and high frequency vibration waves,and the heavier the vibration isolation mass,the better the isolation performance.For low frequency waves,the vibration isolation effect is not so obvious;for a rectangular vibration isolation mass,the isolation performance could be effectively improved by increasing the cross-section height and reducing the cross-section width.A useful reference was provided for the application of rigid vibration isolation masses to the vibration isolation and noise reduction of ship structure.展开更多
A method of error analysis on the positioning accuracy of a pneumatic vibration isolator was proposed.First,the necessity of positioning accuracy was studied,in addition to the key factors associated with positioning ...A method of error analysis on the positioning accuracy of a pneumatic vibration isolator was proposed.First,the necessity of positioning accuracy was studied,in addition to the key factors associated with positioning accuracy.These analyses indicated that the positioning accuracy of the pneumatic vibration isolator was mainly attributed to the position error of the push button and the gap between the spindle and valve stem.Second,the error model of the positioning accuracy of the pneumatic vibration isolator was established through geometric simplification and geometric calculation.There are different methods used to calculate the position error of the push button for the different valves.Finally,an example analysis evaluating the impact of a specific two-position three-way valve on the positioning accuracy was given by means of error distribution.Experimental results validated the accuracy of the error model and the example analysis.This error model can be used to guide the structural parameter optimization design according to the requirements for positioning accuracy.展开更多
This paper describes an analytical investigation into synchrophasing,a vibration control strategy on a machinery installation in which two rotational machines are attached to a beam-like raft by discrete resilient iso...This paper describes an analytical investigation into synchrophasing,a vibration control strategy on a machinery installation in which two rotational machines are attached to a beam-like raft by discrete resilient isolators.Forces and moments introduced by sources are considered,which effectively represent a practical engineering system.Adjusting the relative phase angle between the machines has been theoretically demonstrated to greatly reduce the cost function,which is defined as the sum of velocity squares of attaching points on the raft at each frequency of interest.The effect of the position of the machine is also investigated.Results show that altering the position of the secondary source may cause a slight change to the mode shape of the composite system and therefore change the optimum phase between the two machines.Although the analysis is based on a one-dimensional Euler– Bernoulli beam and each machine is considered as a rigid-body,a key principle can be derived from the results.However,the factors that can influence the synchrophasing control performance would become coupled and highly complicated.This condition has to be considered in practice.展开更多
Combining disk springs having negative stiffness with a rolling-ball in parallel is proposed in this paper. It is used to reduce the system stiffness and the positioning error in a non-ideal environment.The characteri...Combining disk springs having negative stiffness with a rolling-ball in parallel is proposed in this paper. It is used to reduce the system stiffness and the positioning error in a non-ideal environment.The characteristics of a disk spring are analyzed. The dynamic equation of its motion has been obtained based on Newton's second law. After definition of a error margin,the dynamic equation of the motion can be treated as a Duffing oscillator,and the influences of non-dimensional parameters on the stiffness and transmissibility are studied. The natural frequency and transmissibility are achieved in a linearization range,where the ratio of linear to nonlinear items is small enough.The influence of mass ratio and non-dimensional parameters on natural frequency are analyzed. Finally,a comparison of numerical example demonstrates that the QZS system can realize a lower stiffness within an increased range.展开更多
Predicting damage to vibration isolators in a raft experiencing heavy shock loadings from explosions is an important task when designing a raft system. It is also vital to be able to research the vulnerability of heav...Predicting damage to vibration isolators in a raft experiencing heavy shock loadings from explosions is an important task when designing a raft system. It is also vital to be able to research the vulnerability of heavily shocked floating rafts unreliable, especially when the allowable values The conventional approach to prediction has been or ultimate values of vibration isolators of supposedly uniform standard in a raft actually have differing and uncertain values due to defective workmanship. A new model for predicting damage to vibration isolators in a shocked floating raft system is presented in this paper. It is based on a support vector machine(SVM), which uses Artificial Intelligence to characterize complicated nonlinear mapping between the impacting environment and damage to the vibration isolators. The effectiveness of the new method for predicting damage was illustrated by numerical simulations, and shown to be effective when relevant parameters of the model were chosen reasonably. The effect determining parameters, including kernel function and penalty factors, has on prediction results is also discussed. It can be concluded that the SVM will probably become a valid tool to study damage or vulnerability in a shocked raft system.展开更多
We investigated the behaviors of an active control system of two-stage vibration isolation with the actuator installed in parallel with either the upper passive mount or the lower passive isolation mount. We revealed ...We investigated the behaviors of an active control system of two-stage vibration isolation with the actuator installed in parallel with either the upper passive mount or the lower passive isolation mount. We revealed the relationships between the active control force of the actuator and the parameters of the passive isolators by studying the dynamics of two-stage active vibration isolation for the actuator at the foregoing two positions in turn. With the actuator installed beside the upper mount, a small active force can achieve a very good isolating effect when the frequency of the stimulating force is much larger than the natural frequency of the upper mount; a larger active force is required in the low-frequency domain; and the active force equals the stimulating force when the upper mount works within the resonance region, suggesting an approach to reducing wobble and ensuring desirable installation accuracy by increasing the upper-mount stiffness. In either the low or the high frequency region far away from the resonance region, the active force is smaller when the actuator is beside the lower mount than beside the upper mount.展开更多
The relation of mass, stiffness and rate of damping is obtained by using the mechanical analysis of the obstructive vibration system of two dimensions for the design of the obstructive vibration system of more freedom...The relation of mass, stiffness and rate of damping is obtained by using the mechanical analysis of the obstructive vibration system of two dimensions for the design of the obstructive vibration system of more freedom and the micro vibration test bed. The result of stimulational experiment indicates that the isolation of vibration of this system is satisfactory. The design method of vibration can be used as the reference to ultra precision machine tool, super micro orientation machanism and so on.展开更多
Vibration and noise aspects play a relevant role in the lifetime and comfort of urban areas and their resi-dents.Among the different sources,the one coming from the rail transit system will play a central concern in t...Vibration and noise aspects play a relevant role in the lifetime and comfort of urban areas and their resi-dents.Among the different sources,the one coming from the rail transit system will play a central concern in the following years due to its sustainability.Ground-borne vibration and noise assessment as well as techniques to mitigate them become key elements of the environmental impact and the global enlargement planned for the railway industry.This paper aims to describe and compare the different mitigation systems existing and reported in liter-ature through a comprehensive state of the art analysis providing the performance of each measure.First,an introduction to the ground-borne vibration and noise gen-erated from the wheel-rail contact and its propagation through the transmission path is presented.Then,the impact and the different ways of evaluating and assessing these effects are presented,and the insertion loss indicator is introduced.Next,the different mitigation measures at different levels(vehicle,track,transmission path and receiver)are discussed by describing their possible appli-cation and their efficiency in terms of insertion loss.Finally,a summary with inputs of how it is possible to address the future of mitigation systems is reported.展开更多
Longitudinal and horizontal vibration must both be reduced in an effective vibration isolation system. We present a cylindrical shell vibration isolator as a dynamic system composed of four springs and dampers. Vibrat...Longitudinal and horizontal vibration must both be reduced in an effective vibration isolation system. We present a cylindrical shell vibration isolator as a dynamic system composed of four springs and dampers. Vibration is directly produced by the motion of machinery, and more is subsequently generated by harmonic frequencies within their structure. To test the effectiveness of our isolator, we first determined equations for the transmission of vibration from the machine to its cylindrical shell. Damping effects produced by the vibration parameters of our system are then analyzed.展开更多
Analysis and measurements of the vibration on AM50 horizontal axis roadheader of electric-control-box was carried out, and the vibration characteristics were obtained. Based on the results, a new type of wire rope iso...Analysis and measurements of the vibration on AM50 horizontal axis roadheader of electric-control-box was carried out, and the vibration characteristics were obtained. Based on the results, a new type of wire rope isolator was designed, whose characteristics were examined by experiments. The tests show that the wire rope isolator achieves satisfied results and can meet the requirements for the vibration control of the roadheader of electric-control-box.展开更多
基金Project supported by Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2022A1515010967 and 2023A1515012821)the National Natural Science Foundation of China(Grant Nos.12002272 and 12272293)Opening Project of Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province(Grant No.SZDKF-202101)。
文摘Due to technical limitations,existing vibration isolation and energy harvesting(VIEH)devices have poor performance at low frequency.This paper proposes a new multilink-spring mechanism(MLSM)that can be used to solve this problem.The VIEH performance of the MLSM under harmonic excitation and Gaussian white noise was analyzed.It was found that the MLSM has good vibration isolation performance for low-frequency isolation and the frequency band can be widened by adjusting parameters to achieve a higher energy harvesting power.By comparison with two special cases,the results show that the MLSM is basically the same as the other two oscillators in terms of vibration isolation but has better energy harvesting performance under multistable characteristics.The MLSM is expected to reduce the impact of vibration on high-precision sensitive equipment in some special sites such as subways and mines,and at the same time supply power to structural health monitoring devices.
文摘High-static-low-dynamic stiffness (HSLDS) vibration isolators have been demonstrated to be an effective means of attenuating low-frequency vibrations, and may be utilized for ship shafting applications to mitigate torsional vibration. This paper presents the construction of a highly compact HSLDS torsional vibration isolator by connecting positive and negative stiffness components in paral lel. Based on mechanical model analysis, the restoring torque of negative stiffness components is de rived from their springs and connecting rods, while that of positive stiffness components is obtained through their circular section flexible rods. The quasizero stiffness characteristics of the HSLDS iso lator are achieved through a combination of static structural simulation and experimental test. The tor sional vibration isolation performance is assessed by means of numerical simulation and theory analy sis. Finally, the frequency-sweep vibration test is conducted. The test results indicate that the HSLDS torsional vibration isolator exhibits superior low-frequency isolation performance compared to its linear counterpart, rendering it a promising solution for mitigating low-frequency torsional vi bration in ship shafting.
基金Supported by the International Cooperation Program under Grant No.2007DFR80340the National Natural Science Foundation of China under Grant No.50779007
文摘Rigid blocking masses are located in the typical base structure of a power cabin based on the impedance mismatch principle.By combining the acoustic-structural coupling method and statistical energy analysis,the full-band vibration and sound radiation reduction effect of vibration isolation masses located in a base structure was researched.The influence of the blocking mass’ cross-section size and shape parameters and the layout location of the base isolation performance was discussed.Furthermore,the effectiveness of rigid vibration isolation design of the base structure was validated.The results show that the medium and high frequency vibration and sound radiation of a power cabin are effectively reduced by a blocking mass.Concerning weight increment and section requirement,suitably increasing the blocking mass size and section height and reducing section width can result in an efficiency-cost ratio.
基金Supported by the Shipbuilding Industry of National Defense Science and Technology Research Projects in Advance (153010110031)
文摘In considering the theory of structural dynamic optimization design, a design method of the structural style of ship composite brace with rigid vibration isolation mass was studied. Two kinds of structural dynamic optimization formulations minimizing the vibration acceleration of the non-pressure hull on the restraining condition of the gross weight of the ship cabin were established: 1) dynamic optimization of the sectional dimensions of the rigid vibration isolation mass in the composite brace; 2) dynamic optimization of the arranging position of the rigid vibration isolation mass. Through the optimization results, sectional dimensions and the arranging position of the rigid vibration isolation mass with better performance in reducing vibration were gained, and some reference was provided for practical engineering designs as well as enrichment of the design method of a novel ship vibration-isolation brace.
文摘A feedforword neural network of multi-layer topologies for systems with hysteretic nonlinearity is constructed based on Bouce Wen differential model. It not only reflects the hysteresis force characteristics of the Bouce Wen model, but also determines its corresponding parameters. The simulation results show that restoring forceedisplacement curve hysteresis loop is very close to the real curve. The model trained can accurately predict the time response of system. The model is checked under the noise level. The result shows that the model has higher modeling precision, good generalization capability and a certain anti-interference ability.
基金Supported by the National Science and Technology Major Project of China(2015ZX02104003)the Natural Science Foundation of Hubei Province of China(2018CFC889)
文摘To obtain a longer natural period in single degree of freedom(SDF) conservative vibration isolation systems, many scholars have proposed different methods. This paper uncovers a clockwise energy cycle existing in a mass-spring system, in which the potential energy and kinetic energy convert with each other, and the natural period is determined by the magnitude of the energy cycle. Compared to water flow inside a pipe, the previous methods can be consolidated into two methods to make the energy cycle narrower;one is to optimize the parameters directly, the other is to indirectly add an anticlockwise energy cycle to the original one. The anticlockwise energy cycle has the characteristic of gravitational potential energy or elastic potential energy that reduces with displacement. The highly abstract method can provide a better optimization tool to design a practice system.
基金Supported by the Shipbuilding Industry of National Defense Science and Technology Research Projects in Advance under Grant No.153010110031
文摘Based on the principle of impedance mismatching,the performance of rigid vibration isolation mass in impeding vibration wave propagation was discussed from the perspective of wave approach.Based on FEM,the influence of its weight as well as the cross-section shape parameters on the isolation performance of rigid vibration isolation mass was studied through numerical simulation.The results show that rigid vibration isolation mass can effectively impede the propagation of the medium and high frequency vibration waves,and the heavier the vibration isolation mass,the better the isolation performance.For low frequency waves,the vibration isolation effect is not so obvious;for a rectangular vibration isolation mass,the isolation performance could be effectively improved by increasing the cross-section height and reducing the cross-section width.A useful reference was provided for the application of rigid vibration isolation masses to the vibration isolation and noise reduction of ship structure.
基金Supported by National Science and Technology Major Project(2013ZX02104003)the Natural Science Foundation of Hubei Province(2018CFC889)
文摘A method of error analysis on the positioning accuracy of a pneumatic vibration isolator was proposed.First,the necessity of positioning accuracy was studied,in addition to the key factors associated with positioning accuracy.These analyses indicated that the positioning accuracy of the pneumatic vibration isolator was mainly attributed to the position error of the push button and the gap between the spindle and valve stem.Second,the error model of the positioning accuracy of the pneumatic vibration isolator was established through geometric simplification and geometric calculation.There are different methods used to calculate the position error of the push button for the different valves.Finally,an example analysis evaluating the impact of a specific two-position three-way valve on the positioning accuracy was given by means of error distribution.Experimental results validated the accuracy of the error model and the example analysis.This error model can be used to guide the structural parameter optimization design according to the requirements for positioning accuracy.
文摘This paper describes an analytical investigation into synchrophasing,a vibration control strategy on a machinery installation in which two rotational machines are attached to a beam-like raft by discrete resilient isolators.Forces and moments introduced by sources are considered,which effectively represent a practical engineering system.Adjusting the relative phase angle between the machines has been theoretically demonstrated to greatly reduce the cost function,which is defined as the sum of velocity squares of attaching points on the raft at each frequency of interest.The effect of the position of the machine is also investigated.Results show that altering the position of the secondary source may cause a slight change to the mode shape of the composite system and therefore change the optimum phase between the two machines.Although the analysis is based on a one-dimensional Euler– Bernoulli beam and each machine is considered as a rigid-body,a key principle can be derived from the results.However,the factors that can influence the synchrophasing control performance would become coupled and highly complicated.This condition has to be considered in practice.
基金Supported by National Science and Technology Major Project(2013ZX02104003)
文摘Combining disk springs having negative stiffness with a rolling-ball in parallel is proposed in this paper. It is used to reduce the system stiffness and the positioning error in a non-ideal environment.The characteristics of a disk spring are analyzed. The dynamic equation of its motion has been obtained based on Newton's second law. After definition of a error margin,the dynamic equation of the motion can be treated as a Duffing oscillator,and the influences of non-dimensional parameters on the stiffness and transmissibility are studied. The natural frequency and transmissibility are achieved in a linearization range,where the ratio of linear to nonlinear items is small enough.The influence of mass ratio and non-dimensional parameters on natural frequency are analyzed. Finally,a comparison of numerical example demonstrates that the QZS system can realize a lower stiffness within an increased range.
文摘Predicting damage to vibration isolators in a raft experiencing heavy shock loadings from explosions is an important task when designing a raft system. It is also vital to be able to research the vulnerability of heavily shocked floating rafts unreliable, especially when the allowable values The conventional approach to prediction has been or ultimate values of vibration isolators of supposedly uniform standard in a raft actually have differing and uncertain values due to defective workmanship. A new model for predicting damage to vibration isolators in a shocked floating raft system is presented in this paper. It is based on a support vector machine(SVM), which uses Artificial Intelligence to characterize complicated nonlinear mapping between the impacting environment and damage to the vibration isolators. The effectiveness of the new method for predicting damage was illustrated by numerical simulations, and shown to be effective when relevant parameters of the model were chosen reasonably. The effect determining parameters, including kernel function and penalty factors, has on prediction results is also discussed. It can be concluded that the SVM will probably become a valid tool to study damage or vulnerability in a shocked raft system.
基金the Natural Science Foundation of China under Grant No. 50075029
文摘We investigated the behaviors of an active control system of two-stage vibration isolation with the actuator installed in parallel with either the upper passive mount or the lower passive isolation mount. We revealed the relationships between the active control force of the actuator and the parameters of the passive isolators by studying the dynamics of two-stage active vibration isolation for the actuator at the foregoing two positions in turn. With the actuator installed beside the upper mount, a small active force can achieve a very good isolating effect when the frequency of the stimulating force is much larger than the natural frequency of the upper mount; a larger active force is required in the low-frequency domain; and the active force equals the stimulating force when the upper mount works within the resonance region, suggesting an approach to reducing wobble and ensuring desirable installation accuracy by increasing the upper-mount stiffness. In either the low or the high frequency region far away from the resonance region, the active force is smaller when the actuator is beside the lower mount than beside the upper mount.
文摘The relation of mass, stiffness and rate of damping is obtained by using the mechanical analysis of the obstructive vibration system of two dimensions for the design of the obstructive vibration system of more freedom and the micro vibration test bed. The result of stimulational experiment indicates that the isolation of vibration of this system is satisfactory. The design method of vibration can be used as the reference to ultra precision machine tool, super micro orientation machanism and so on.
基金financially supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Sk?odowska-Curie grant agreement No INSPIRE813424。
文摘Vibration and noise aspects play a relevant role in the lifetime and comfort of urban areas and their resi-dents.Among the different sources,the one coming from the rail transit system will play a central concern in the following years due to its sustainability.Ground-borne vibration and noise assessment as well as techniques to mitigate them become key elements of the environmental impact and the global enlargement planned for the railway industry.This paper aims to describe and compare the different mitigation systems existing and reported in liter-ature through a comprehensive state of the art analysis providing the performance of each measure.First,an introduction to the ground-borne vibration and noise gen-erated from the wheel-rail contact and its propagation through the transmission path is presented.Then,the impact and the different ways of evaluating and assessing these effects are presented,and the insertion loss indicator is introduced.Next,the different mitigation measures at different levels(vehicle,track,transmission path and receiver)are discussed by describing their possible appli-cation and their efficiency in terms of insertion loss.Finally,a summary with inputs of how it is possible to address the future of mitigation systems is reported.
基金the National Nature Science Foundation under Grant No.50375121.
文摘Longitudinal and horizontal vibration must both be reduced in an effective vibration isolation system. We present a cylindrical shell vibration isolator as a dynamic system composed of four springs and dampers. Vibration is directly produced by the motion of machinery, and more is subsequently generated by harmonic frequencies within their structure. To test the effectiveness of our isolator, we first determined equations for the transmission of vibration from the machine to its cylindrical shell. Damping effects produced by the vibration parameters of our system are then analyzed.
基金State Key Project of Science and Technology of The Eighth Five-Year Plan(85-201-01-01-3)
文摘Analysis and measurements of the vibration on AM50 horizontal axis roadheader of electric-control-box was carried out, and the vibration characteristics were obtained. Based on the results, a new type of wire rope isolator was designed, whose characteristics were examined by experiments. The tests show that the wire rope isolator achieves satisfied results and can meet the requirements for the vibration control of the roadheader of electric-control-box.