This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double...This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double-layer charge liners were fabricated by using CVD to deposit tungsten layers on the inner surfaces of pure T2 copper liners.The microstructures of the tungsten layers were analyzed using a scanning electron microscope(SEM).The feasibility analysis was carried out by pulsed X-rays,slug-retrieval test and static penetration tests.The shaped charge jet forming and penetration law of inner tungsten-coated double-layer liner were studied by numerical simulation method.The results showed that the double-layer liners could form well-shaped jets.The errors between the X-ray test results and the numerical results were within 11.07%.A slug-retrieval test was found that the retrieved slug was similar to a numerically simulated slug.Compared with the traditional pure copper shaped charge jet,the penetration depth of the double-layer shaped charge liner increased by 11.4% and>10.8% respectively.In summary,the test results are good,and the numerical simulation is in good agreement with the test,which verified the feasibility of using the CVD method to fabricate double-layer charge liners with a high-density and high-strength refractory metal as the inner liner.展开更多
In order to increase the fatigue life (FL) of road wheels (RW), a kind of double layer rubber flange (DLRF) is put forward. It consists of two layers of rubber, where metal wires are laid in the inner layer and the ou...In order to increase the fatigue life (FL) of road wheels (RW), a kind of double layer rubber flange (DLRF) is put forward. It consists of two layers of rubber, where metal wires are laid in the inner layer and the outer layer has no inlaid metal wires. Stress, strain and temperature field of DLRF were calculated with ANSYS finite element analysis (FEA) software, FL of DLRF RW was also computed with fracture mechanics fatigue theory. The results of computation indicate that the heat generated in RW's rubber flange (RF) can be reduced by the use of DLRF, and the FL of RW can be increased without affecting the mechanical intensity of RW.展开更多
The adsorption capacity and absorption rate for electrolyte onto activated carbon are important parameters used to characterize activated carbon electric double-layer capacitor electrodes. In this paper the pore struc...The adsorption capacity and absorption rate for electrolyte onto activated carbon are important parameters used to characterize activated carbon electric double-layer capacitor electrodes. In this paper the pore structure of typical commercial activated carbons, and various Mn-doped activated carbons prepared on a laboratory scale, are described. The pore structure was character-ized by N2 adsorption/desorption isotherms. Isotherms for K+ adsorption onto these activated carbons from the aqueous phase were also obtained. The experimental, equilibrium K+ adsorption data were fitted to the Langmuir, Freundlich or Temkin equations. Adsorption of K+ onto the activated carbons was measured and plotted as a function of time. The adsorption kinetic data were modeled by either pseudo-first or pseudo-second order equations. The Elvoich equation, a liquid film diffusion and an intra-particle diffusion model were used to fit the kinetic data. The results indicate that the adsorption of K+ onto activated carbon is influenced by many factors including pore size distribution, specific surface area and the surface chemistry of the activated carbons. The Temkin equation best describes the equilibrium adsorption data. The pseudo-second order model exactly describes the whole adsorption process, which is controlled by both liquid film and intra-particle diffusion.展开更多
The nanocomposite BaFe12O19/α-Fe and nanocrystalline α-Fe microfibers with diameters of 1-5 μm, high aspect ratios and large specific areas are prepared by the citrate gel transformation and reduction process. The ...The nanocomposite BaFe12O19/α-Fe and nanocrystalline α-Fe microfibers with diameters of 1-5 μm, high aspect ratios and large specific areas are prepared by the citrate gel transformation and reduction process. The nanocomposite BaFe12O19/α-Fe microfibers show some exchange-coupling interactions largely arising from the magnetization hard (BaFe12019) and soft (a-Fe) nanoparticles. For the microwave absorptions, the double-layer structures consisting of the nanocomposite BaFe12O19/α-Fe and α-Fe microfibers each exhibit a wide band and strong absorption behavior. When the nanocomposite BaFel2O19/α-Fe microfibers are used as a matching layer of 2.3 mm in thickness and a-Fe microfibers as an absorbing layer of 1.2 mm in thickness, the optimal reflection loss (RL) achieves -47 dB at 15.6 GHz, the absorption bandwidth is about 12.7 GHz ranging from 5.3 to 18 GHz, exceeding -20 dB, which covers 72.5% C-band (4.2-8.2 GHz) and whole X-band (8.2-12.4 GHz) and Ku-band (12.4-18 GHz). The enhanced absorption properties of these double-layer absorbers are mainly ascribed to the improvement in impedance matching ability and microwave multi-reflection largely resulting from the dipolar polarization, interfacial polarization, exchange-coupling interaction, and small size effect.展开更多
Solid-state lithium metal batteries are promising next-generation batteries for both micro-scale integrated electronic devices and macro-scale electric vehicles.However,electrochemical incompatibility between electrol...Solid-state lithium metal batteries are promising next-generation batteries for both micro-scale integrated electronic devices and macro-scale electric vehicles.However,electrochemical incompatibility between electrolyte and electrodes causes continuous performance degradation.Here,we report a unique design of a double-layer composite solid-state electrolyte(D-CSE),where each layer,composed of both polymer and ceramics,is electrochemically compatible with its contacting electrode(Li anode or LiCoO_(2)cathode).The D-CSE has a small thickness(50μm),high thermal stability(up to 160℃ without noticeable deformation),and good flexibility even at a high ceramics content(66.7 wt%).Large-area selfstanding film can be obtained by a facile coating route.The electrolyte/electrode interface can be further enhanced via forming a soft interface by in-situ polymerization.Quasi-solid-state Li|D-CSE|LiCoO_(2)coin cells with the cathode-supported D-CSE can deliver a high initial discharge capacity of 134 mAh g^(-1) and a high capacity retention of 83%after 200 cycles at 0.5 C and 60℃.Quasi-solid-state Li|D-CSE|LiCoO_(2)pouch cells(designed capacity 8.6 mAh)with the self-standing D-CSE have a high retention of80%after 180 cycles at 2 mA charge and 4 mA discharge.At a high cathode loading(19.1 mg cm^(-2)),the Li|D-CSE|LiCoO_(2)pouch cell still can be stably cycled,and can withstand abuse tests of folding,cutting and nail penetration,indicating practical applications of the D-CSE.展开更多
Microwave absorption properties of the nanocrystalline strontium ferrite (SrFe12O19) and iron (α-Fe) microfibers for single-layer and double-layer structures are investigated in a frequency range of 2 GHz 18 GHz....Microwave absorption properties of the nanocrystalline strontium ferrite (SrFe12O19) and iron (α-Fe) microfibers for single-layer and double-layer structures are investigated in a frequency range of 2 GHz 18 GHz. For the singlelayer absorbers, the nanocrystalline SrFe12O19 microfibers show some microwave absorptions at 6 GHz 18 GHz, with a minimum reflection loss (RL) value of -11.9 dB at 14.1 GHz for a specimen thickness of 3.0 mm, while for the nanocrystalline α-Fe microfibers, their absorptions largely take place at 15 GHz-18 GHz with the RL value exceeding -10 dB, with a minimum .RL value of about -24 dB at 17.5 GHz for a specimen thickness of 0.7 mm. For the doublelayer absorber with an absorbing layer of α-Fe microfibers with a thickness of 0.7 mm and matching layer of SrFe12O19 microfibers with a thickness of 1.3 ram, the minimum RL value is about -63 dB at 16.4 GHz and the absorption band width is about 6.7 GHz ranging from 11.3 GHz to 18 GHz with the RL value exceeding -10 dB which covers the whole Ku-band (12.4 GHz 18 GHz) and 27% of X-band (8.2 GHz 12.4 GHz).展开更多
The mechanism for the formation of double-layer vertically aligned carbon nanotube arrays(VACNTs) through single-step CVD growth is investigated. The evolution of the structures and defect concentration of the VACNTs ...The mechanism for the formation of double-layer vertically aligned carbon nanotube arrays(VACNTs) through single-step CVD growth is investigated. The evolution of the structures and defect concentration of the VACNTs are tracked by scanning electron microscopy(SEM) and Raman spectroscopy. During the growth, the catalyst particles are stayed constantly on the substrate. The precipitation of the second CNT layer happens at around 30 min as proved by SEM.During the growth of the first layer, catalyst nanoparticles are deactivated with the accumulation of amorphous carbon coatings on their surfaces, which leads to the termination of the growth of the first layer CNTs. Then, the catalyst particles are reactivated by the hydrogen in the gas flow, leading to the precipitation of the second CNT layer. The growth of the second CNT layer lifts the amorphous carbon coatings on catalyst particles and substrates. The release of mechanical energy by CNTs provides big enough energy to lift up amorphous carbon flakes on catalyst particles and substrates which finally stay at the interfaces of the two layers simulated by finite element analysis. This study sheds light on the termination mechanism of CNTs during CVD process.展开更多
The effects of magnetic fields on electrochemical processes have made a great impact on both theoretical and practical significances in im- proving capacitor performance. In this study, active carbon/Fe304-NPs nanocom...The effects of magnetic fields on electrochemical processes have made a great impact on both theoretical and practical significances in im- proving capacitor performance. In this study, active carbon/Fe304-NPs nanocomposites (AC/Fe304-NPs) were synthesized using a facile hy- drothermal method and ultrasonic technique. Transmission electron micrographs (TEM) showed that Fe304 nanoparticles (Fe304-NPs) grew along the edge of AC. AC/Fe304-NPs nanocomposites were further used as an electrochemical electrode, and its electrochemical performance was tested under magnetization and non-magnetization conditions, respectively, in a three-electrode electrochemical device. Micro-magnetic field could improve the electric double-layer capacitance, reduce the charge transfer resistance, and enhance the discharge performance. The capacitance enhancement of magnetized electrode was increased by 33.1% at the current density of 1 A/g, and the energy density was improved to 15.97 Wh/kg, due to the addition of magnetic particles.展开更多
A theoretical model which couples the oscillation of cavitation bubbles with the equation of an acoustic wave is utilized to describe the sound fields in double-layer liquids, which can be used to realize the asymmetr...A theoretical model which couples the oscillation of cavitation bubbles with the equation of an acoustic wave is utilized to describe the sound fields in double-layer liquids, which can be used to realize the asymmetric transmission of acoustic waves. Numerical simulations show that the asymmetry is related to the properties of the host liquids and the input acoustic wave. Asymmetry can be enhanced if the maximum number density or the ambient radius of the cavitation bubbles in the low cavitation threshold liquid increases. Moreover, the direction of rectification will be reversed if the amplitude of the input acoustic wave becomes high enough.展开更多
The time-sequenced damage behavior of the reactive projectile impacting double-layer plates is discussed.The analytical model considering the combined effect of kinetic and chemical energy is developed to reveal the d...The time-sequenced damage behavior of the reactive projectile impacting double-layer plates is discussed.The analytical model considering the combined effect of kinetic and chemical energy is developed to reveal the damage mechanism.The influences of impact velocity and reactive projectile chemical characteristics on the damage effect are decoupled analyzed based on this model.These analyses indicate that the high energy releasing efficiency and fast reaction propagation velocity of the reactive projectile are conducive to enhancing the damage effect.The experiments with various reactive projectiles impact velocity increasing from 702 to 1385 m/s were conducted to verify this model.The experimental results presented that,the damage hole radius of the rear-plate increases with the increase of impact velocity.At the impact velocity of 1350 m/s,the radius of damage hole formed by PTFE/Al/Bi_(2)O_(3),PTFE/Al/MoO_(3),PTFE/Al/Fe_(2)O_(3)projectile on the rear-plate become smaller in sequence.These results are consistent with the analytical model prediction,demonstrating that this model can predict the damage effect quantitatively.This work is of constructive significance to the application of reactive projectiles.展开更多
Gas-driven permeation(GDP)and plasma-driven permeation(PDP)of hydrogen gas through Ga In Sn/Fe are systematically investigated in this work.The permeation parameters of hydrogen through Ga In Sn/Fe,including diffusivi...Gas-driven permeation(GDP)and plasma-driven permeation(PDP)of hydrogen gas through Ga In Sn/Fe are systematically investigated in this work.The permeation parameters of hydrogen through Ga In Sn/Fe,including diffusivity,Sieverts'constant,permeability,and surface recombination coefficient are obtained.The permeation flux of hydrogen through Ga In Sn/Fe shows great dependence on external conditions such as temperature,hydrogen pressure,and thickness of liquid Ga In Sn.Furthermore,the hydrogen permeation behavior through Ga In Sn/Fe is well consistent with the multilayer permeation theory.In PDP and GDP experiments,hydrogen through Ga In Sn/Fe satisfies the diffusion-limited regime.In addition,the permeation flux of PDP is greater than that of GDP.The increase of hydrogen plasma density hardly causes the hydrogen PDP flux to change within the test scope of this work,which is due to the dissolution saturation.These findings provide guidance for a comprehensive and systematic understanding of hydrogen isotope recycling,permeation,and retention in plasma-facing components under actual conditions.展开更多
This paper stuides the magnetization and quantum fluctuations of an antiferro-antiferromagnetic (AF-AF) doublelayer at zero temperature. It is found that the exchanges and anisotropy constants affect the quantum flu...This paper stuides the magnetization and quantum fluctuations of an antiferro-antiferromagnetic (AF-AF) doublelayer at zero temperature. It is found that the exchanges and anisotropy constants affect the quantum fluctuations of spins. If the anisotropy exists, there will be no acoustic energy branch in the system. The anisotropy constant, antiferromagnetic intralayer and interlayer coupling have important roles in a balance of the quantum competition.展开更多
Electric double-layer field effect experiments were performed on ultrathin films of La0.325Pr0.3Ca0.375MnO3, which is noted for its micrometer-scale phase separation. A clear change of resistance up to 220% was observ...Electric double-layer field effect experiments were performed on ultrathin films of La0.325Pr0.3Ca0.375MnO3, which is noted for its micrometer-scale phase separation. A clear change of resistance up to 220% was observed and the characteristic metal-insulator transition temperature Tp was also shifted. The changes of both the resistance and Tp, suggest that the electric field induced not only tuning of the carrier density but also rebalancing of the phase separation states. The change of the charge-ordered insulating phase fraction was estimated to be temperature dependent, and a maximum of 16% was achieved in the phase separation regime. This tuning effect was partially irreversible, which might be due to an oxygen vacancy migration that is driven by the huge applied electric field.展开更多
Ordered mesoporous carbon (OMC) and metal-doped (M-doped) OMC composites are prepared, and their electromagnetic (EM) parameters are measured. Using the measured EM parameters we calculate the EM wave absorption...Ordered mesoporous carbon (OMC) and metal-doped (M-doped) OMC composites are prepared, and their electromagnetic (EM) parameters are measured. Using the measured EM parameters we calculate the EM wave absorption properties of a double-layer absorber, which is composed of OMC as an absorbing layer and M-doped OMC as the matching layer. The calculated results show that the EM wave absorption performance of OMC/OMC–Co (2.2mm/2.1mm) is improved remarkably. The obtained effective absorption bandwidth is up to 10.3 GHz and the minimum reflection loss reaches 47.6 dB at 14.3 GHz. The enhanced absorption property of OMC/OMC–Co can be attributed to the impedance match between the air and the absorber. Moreover, it can be found that for the absorber with a given matching layer, a larger value of -tanδ ε (= tan δ ε absorbing tan δε matching ) can induce better absorption performance, indicating that the difference in impedance between the absorbing layer and the matching layer plays an important role in improving the absorption property of double-layer absorbers.展开更多
In this paper, we investigate the optical properties of the double-layer metal films perforated with single apertures by analysing the coupling of localized surface plasmon polaritons (LSPPs). It is found that the a...In this paper, we investigate the optical properties of the double-layer metal films perforated with single apertures by analysing the coupling of localized surface plasmon polaritons (LSPPs). It is found that the amplitude and the wavelength of transmission peak in such a structure can be adjusted by changing the longitudinal interval D between two films and the lateral displacements dx and dy which are parallel and perpendicular to the polarization direction of incident light, respectively. The variation of longitudinal interval D results in the redshift of transmission peak due to the change of coupling strength of LSPPs near the single apertures. The amplitude of transmission peak decreases with the increase of dy and is less than that in the case of dx, which originates from the difference in coupling manner between LSPPs and the localized natures of LSPPs.展开更多
Interaction between high-intensity pulsed ion beam (HIPIB) and a double-layer target with titanium film on top of aluminum substrate was simulated. The two-dimensional nonlinear thermal conduction equations, with th...Interaction between high-intensity pulsed ion beam (HIPIB) and a double-layer target with titanium film on top of aluminum substrate was simulated. The two-dimensional nonlinear thermal conduction equations, with the deposited energy in the target taken as source term, were derived and solved by finite differential method. As a result, the two-dimensional spatial and temporal evolution profiles of temperature were obtained for a titanium/aluminum double-layer target irradiated by a pulse of HIPIB. The effects of ion beam current density on the phase state of the target materials near the film and substrate interface were analyzed. Both titanium and aluminum were melted near the interface after a shot when the ion beam current density fell in the range of 100 A/cm2 to 200 A/cm2.展开更多
Indium doped zinc oxide (ZnO:In) thin films were prepared by ultrasonic spray pyrolysis on corning eagle 2000 glass substrate. 1 and 2 at.% indium doped single-layer ZnO:In thin films with different amounts of ace...Indium doped zinc oxide (ZnO:In) thin films were prepared by ultrasonic spray pyrolysis on corning eagle 2000 glass substrate. 1 and 2 at.% indium doped single-layer ZnO:In thin films with different amounts of acetic acid added in the initial solution were fabricated. The 1 at.% indium doped single-layers have triangle grains. The 2 at.% indium doped single-layer with 0.18 acetic acid adding has the resistivity of 6.82 × 10^-3 Ω. cm and particle grains. The doublelayers structure is designed to fabricate the ZnO:In thin film with low resistivity (2.58 × 10^-3 Ω. cm) and good surface morphology. It is found that the surface morphology of the double-layer ZnO:In film strongly depends on the substratelayer, and the second-layer plays a large part in the resistivity of the doublewlayer ZnO:In thin film. Both total and direct transmittances of the double-layer ZnO:In film are above 80% in the visible light region. Single junction a-Si:H solar cell based on the double-layer ZnO:In as front electrode is also investigated.展开更多
A new heating method is proposed to increase the cell temperature of the 6-8 type multi-anvil apparatus without reducing the volume of the sample chamber. The double-layer heater assembly (DHA) has two layers of heate...A new heating method is proposed to increase the cell temperature of the 6-8 type multi-anvil apparatus without reducing the volume of the sample chamber. The double-layer heater assembly (DHA) has two layers of heaters connected in parallel. The temperature of the cell was able to reach 2500 ℃ by using 0.025 mm rhenium foils, and the temperature limit was increased by 25% compared with that of the traditional single-layer assembly. The power-temperature relationships for these two assemblies with different sizes were calibrated by using W/Re thermocouple at 20 GPa. When the volume of samples was the same, the DHA not only attained higher temperature, but also kept the holding time longer, compared to the traditional assembly. The results of more than ten experiments showed that the new 10/4 DHA with a relatively large sample size (2 mm in diameter and 4 mm in height) can work stably with the center temperature of the sample cavity exceeding 2300 ℃ under the pressure of 20 GPa.展开更多
The eye,a complex organ isolated from the systemic circulation,presents significant drug delivery challenges owing to its protective mechanisms,such as the blood-retinal barrier and corneal impermeability.Conventional...The eye,a complex organ isolated from the systemic circulation,presents significant drug delivery challenges owing to its protective mechanisms,such as the blood-retinal barrier and corneal impermeability.Conventional drug administration methods often fail to sustain therapeutic levels and may compromise patient safety and compliance.Polysaccharidebased microneedles(PSMNs)have emerged as a transformative solution for ophthalmic drug delivery.However,a comprehensive review of PSMNs in ophthalmology has not been published to date.In this review,we critically examine the synergy between polysaccharide chemistry and microneedle technology for enhancing ocular drug delivery.We provide a thorough analysis of PSMNs,summarizing the design principles,fabrication processes,and challenges addressed during fabrication,including improving patient comfort and compliance.We also describe recent advances and the performance of various PSMNs in both research and clinical scenarios.Finally,we review the current regulatory frameworks and market barriers that are relevant to the clinical and commercial advancement of PSMNs and provide a final perspective on this research area.展开更多
基金funded by the China Postdoctoral Science Foundation(Grant No.2022M721614)the opening project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology(Grant No.KFJJ23-07M)。
文摘This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double-layer charge liners were fabricated by using CVD to deposit tungsten layers on the inner surfaces of pure T2 copper liners.The microstructures of the tungsten layers were analyzed using a scanning electron microscope(SEM).The feasibility analysis was carried out by pulsed X-rays,slug-retrieval test and static penetration tests.The shaped charge jet forming and penetration law of inner tungsten-coated double-layer liner were studied by numerical simulation method.The results showed that the double-layer liners could form well-shaped jets.The errors between the X-ray test results and the numerical results were within 11.07%.A slug-retrieval test was found that the retrieved slug was similar to a numerically simulated slug.Compared with the traditional pure copper shaped charge jet,the penetration depth of the double-layer shaped charge liner increased by 11.4% and>10.8% respectively.In summary,the test results are good,and the numerical simulation is in good agreement with the test,which verified the feasibility of using the CVD method to fabricate double-layer charge liners with a high-density and high-strength refractory metal as the inner liner.
文摘In order to increase the fatigue life (FL) of road wheels (RW), a kind of double layer rubber flange (DLRF) is put forward. It consists of two layers of rubber, where metal wires are laid in the inner layer and the outer layer has no inlaid metal wires. Stress, strain and temperature field of DLRF were calculated with ANSYS finite element analysis (FEA) software, FL of DLRF RW was also computed with fracture mechanics fatigue theory. The results of computation indicate that the heat generated in RW's rubber flange (RF) can be reduced by the use of DLRF, and the FL of RW can be increased without affecting the mechanical intensity of RW.
基金the financial support from the Research Fund for the Doctoral Program of Higher Education of China (No.2006 0290006)
文摘The adsorption capacity and absorption rate for electrolyte onto activated carbon are important parameters used to characterize activated carbon electric double-layer capacitor electrodes. In this paper the pore structure of typical commercial activated carbons, and various Mn-doped activated carbons prepared on a laboratory scale, are described. The pore structure was character-ized by N2 adsorption/desorption isotherms. Isotherms for K+ adsorption onto these activated carbons from the aqueous phase were also obtained. The experimental, equilibrium K+ adsorption data were fitted to the Langmuir, Freundlich or Temkin equations. Adsorption of K+ onto the activated carbons was measured and plotted as a function of time. The adsorption kinetic data were modeled by either pseudo-first or pseudo-second order equations. The Elvoich equation, a liquid film diffusion and an intra-particle diffusion model were used to fit the kinetic data. The results indicate that the adsorption of K+ onto activated carbon is influenced by many factors including pore size distribution, specific surface area and the surface chemistry of the activated carbons. The Temkin equation best describes the equilibrium adsorption data. The pseudo-second order model exactly describes the whole adsorption process, which is controlled by both liquid film and intra-particle diffusion.
基金supported by the National Natural Science Foundation of China(Grant Nos.51274106 and 51202091)the Natural Science Foundation ofJiangsu Provincial Higher Education,China(Grant No.12KJA430001)+2 种基金the Science and Technology Support Program of Jiangsu Province,China(GrantNos.BE2012143 and BE2013071)the Jiangsu Provincial Postgraduate Cultivation and Innovation Project,China(Grant No.CXZZ13 0662)the PriorityAcademic Program Development of Jiangsu Higher Education Institutions,China(Grant No.1033000003)
文摘The nanocomposite BaFe12O19/α-Fe and nanocrystalline α-Fe microfibers with diameters of 1-5 μm, high aspect ratios and large specific areas are prepared by the citrate gel transformation and reduction process. The nanocomposite BaFe12O19/α-Fe microfibers show some exchange-coupling interactions largely arising from the magnetization hard (BaFe12019) and soft (a-Fe) nanoparticles. For the microwave absorptions, the double-layer structures consisting of the nanocomposite BaFe12O19/α-Fe and α-Fe microfibers each exhibit a wide band and strong absorption behavior. When the nanocomposite BaFel2O19/α-Fe microfibers are used as a matching layer of 2.3 mm in thickness and a-Fe microfibers as an absorbing layer of 1.2 mm in thickness, the optimal reflection loss (RL) achieves -47 dB at 15.6 GHz, the absorption bandwidth is about 12.7 GHz ranging from 5.3 to 18 GHz, exceeding -20 dB, which covers 72.5% C-band (4.2-8.2 GHz) and whole X-band (8.2-12.4 GHz) and Ku-band (12.4-18 GHz). The enhanced absorption properties of these double-layer absorbers are mainly ascribed to the improvement in impedance matching ability and microwave multi-reflection largely resulting from the dipolar polarization, interfacial polarization, exchange-coupling interaction, and small size effect.
基金supported by the National Natural Science Foundation of China(Grant No.51572238,51725102)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY19E020013)Hunan Provincial Science and Technology Major Project of China(Grant Nos.2020GK1014,2021GK2018)。
文摘Solid-state lithium metal batteries are promising next-generation batteries for both micro-scale integrated electronic devices and macro-scale electric vehicles.However,electrochemical incompatibility between electrolyte and electrodes causes continuous performance degradation.Here,we report a unique design of a double-layer composite solid-state electrolyte(D-CSE),where each layer,composed of both polymer and ceramics,is electrochemically compatible with its contacting electrode(Li anode or LiCoO_(2)cathode).The D-CSE has a small thickness(50μm),high thermal stability(up to 160℃ without noticeable deformation),and good flexibility even at a high ceramics content(66.7 wt%).Large-area selfstanding film can be obtained by a facile coating route.The electrolyte/electrode interface can be further enhanced via forming a soft interface by in-situ polymerization.Quasi-solid-state Li|D-CSE|LiCoO_(2)coin cells with the cathode-supported D-CSE can deliver a high initial discharge capacity of 134 mAh g^(-1) and a high capacity retention of 83%after 200 cycles at 0.5 C and 60℃.Quasi-solid-state Li|D-CSE|LiCoO_(2)pouch cells(designed capacity 8.6 mAh)with the self-standing D-CSE have a high retention of80%after 180 cycles at 2 mA charge and 4 mA discharge.At a high cathode loading(19.1 mg cm^(-2)),the Li|D-CSE|LiCoO_(2)pouch cell still can be stably cycled,and can withstand abuse tests of folding,cutting and nail penetration,indicating practical applications of the D-CSE.
基金supported by the Aviation Science Foundation,China (Grant No.2009ZF52063)the Research Fund for the Doctoral Program of Higher Education of China (Grant No.20103227110006)the Jiangsu Provincial Postgraduate Cultivation and Innovation Project,China (Grant No.CX10B-257Z)
文摘Microwave absorption properties of the nanocrystalline strontium ferrite (SrFe12O19) and iron (α-Fe) microfibers for single-layer and double-layer structures are investigated in a frequency range of 2 GHz 18 GHz. For the singlelayer absorbers, the nanocrystalline SrFe12O19 microfibers show some microwave absorptions at 6 GHz 18 GHz, with a minimum reflection loss (RL) value of -11.9 dB at 14.1 GHz for a specimen thickness of 3.0 mm, while for the nanocrystalline α-Fe microfibers, their absorptions largely take place at 15 GHz-18 GHz with the RL value exceeding -10 dB, with a minimum .RL value of about -24 dB at 17.5 GHz for a specimen thickness of 0.7 mm. For the doublelayer absorber with an absorbing layer of α-Fe microfibers with a thickness of 0.7 mm and matching layer of SrFe12O19 microfibers with a thickness of 1.3 ram, the minimum RL value is about -63 dB at 16.4 GHz and the absorption band width is about 6.7 GHz ranging from 11.3 GHz to 18 GHz with the RL value exceeding -10 dB which covers the whole Ku-band (12.4 GHz 18 GHz) and 27% of X-band (8.2 GHz 12.4 GHz).
基金supported by NSFC(51422204,51372132)National Basic Research Program of China(2013CB934200)+2 种基金SRFDP(20120002120038)TNLIST Cross-discipline FoundationBNLMS Cross-discipline Foundation
文摘The mechanism for the formation of double-layer vertically aligned carbon nanotube arrays(VACNTs) through single-step CVD growth is investigated. The evolution of the structures and defect concentration of the VACNTs are tracked by scanning electron microscopy(SEM) and Raman spectroscopy. During the growth, the catalyst particles are stayed constantly on the substrate. The precipitation of the second CNT layer happens at around 30 min as proved by SEM.During the growth of the first layer, catalyst nanoparticles are deactivated with the accumulation of amorphous carbon coatings on their surfaces, which leads to the termination of the growth of the first layer CNTs. Then, the catalyst particles are reactivated by the hydrogen in the gas flow, leading to the precipitation of the second CNT layer. The growth of the second CNT layer lifts the amorphous carbon coatings on catalyst particles and substrates. The release of mechanical energy by CNTs provides big enough energy to lift up amorphous carbon flakes on catalyst particles and substrates which finally stay at the interfaces of the two layers simulated by finite element analysis. This study sheds light on the termination mechanism of CNTs during CVD process.
基金supported by the National Natural Science Foundation of China(Grant No.21376034 and 21373025)
文摘The effects of magnetic fields on electrochemical processes have made a great impact on both theoretical and practical significances in im- proving capacitor performance. In this study, active carbon/Fe304-NPs nanocomposites (AC/Fe304-NPs) were synthesized using a facile hy- drothermal method and ultrasonic technique. Transmission electron micrographs (TEM) showed that Fe304 nanoparticles (Fe304-NPs) grew along the edge of AC. AC/Fe304-NPs nanocomposites were further used as an electrochemical electrode, and its electrochemical performance was tested under magnetization and non-magnetization conditions, respectively, in a three-electrode electrochemical device. Micro-magnetic field could improve the electric double-layer capacitance, reduce the charge transfer resistance, and enhance the discharge performance. The capacitance enhancement of magnetized electrode was increased by 33.1% at the current density of 1 A/g, and the energy density was improved to 15.97 Wh/kg, due to the addition of magnetic particles.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11334005,11574150 and 11564006
文摘A theoretical model which couples the oscillation of cavitation bubbles with the equation of an acoustic wave is utilized to describe the sound fields in double-layer liquids, which can be used to realize the asymmetric transmission of acoustic waves. Numerical simulations show that the asymmetry is related to the properties of the host liquids and the input acoustic wave. Asymmetry can be enhanced if the maximum number density or the ambient radius of the cavitation bubbles in the low cavitation threshold liquid increases. Moreover, the direction of rectification will be reversed if the amplitude of the input acoustic wave becomes high enough.
基金supported by the State Key Program of National Natural Science Foundation of China(Grant No.12132003)State Key Laboratory of Explosion Science and Technology(Grant No.QNKT20-07)。
文摘The time-sequenced damage behavior of the reactive projectile impacting double-layer plates is discussed.The analytical model considering the combined effect of kinetic and chemical energy is developed to reveal the damage mechanism.The influences of impact velocity and reactive projectile chemical characteristics on the damage effect are decoupled analyzed based on this model.These analyses indicate that the high energy releasing efficiency and fast reaction propagation velocity of the reactive projectile are conducive to enhancing the damage effect.The experiments with various reactive projectiles impact velocity increasing from 702 to 1385 m/s were conducted to verify this model.The experimental results presented that,the damage hole radius of the rear-plate increases with the increase of impact velocity.At the impact velocity of 1350 m/s,the radius of damage hole formed by PTFE/Al/Bi_(2)O_(3),PTFE/Al/MoO_(3),PTFE/Al/Fe_(2)O_(3)projectile on the rear-plate become smaller in sequence.These results are consistent with the analytical model prediction,demonstrating that this model can predict the damage effect quantitatively.This work is of constructive significance to the application of reactive projectiles.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11905151 and 11875198)the National Key Research and Development Program of China(Grant No.2022YFE03130000)。
文摘Gas-driven permeation(GDP)and plasma-driven permeation(PDP)of hydrogen gas through Ga In Sn/Fe are systematically investigated in this work.The permeation parameters of hydrogen through Ga In Sn/Fe,including diffusivity,Sieverts'constant,permeability,and surface recombination coefficient are obtained.The permeation flux of hydrogen through Ga In Sn/Fe shows great dependence on external conditions such as temperature,hydrogen pressure,and thickness of liquid Ga In Sn.Furthermore,the hydrogen permeation behavior through Ga In Sn/Fe is well consistent with the multilayer permeation theory.In PDP and GDP experiments,hydrogen through Ga In Sn/Fe satisfies the diffusion-limited regime.In addition,the permeation flux of PDP is greater than that of GDP.The increase of hydrogen plasma density hardly causes the hydrogen PDP flux to change within the test scope of this work,which is due to the dissolution saturation.These findings provide guidance for a comprehensive and systematic understanding of hydrogen isotope recycling,permeation,and retention in plasma-facing components under actual conditions.
基金supported by the Natural Science Foundation of the Educational Department of Liaoning Province,China (Grant Nos20060638 and 2008533)
文摘This paper stuides the magnetization and quantum fluctuations of an antiferro-antiferromagnetic (AF-AF) doublelayer at zero temperature. It is found that the exchanges and anisotropy constants affect the quantum fluctuations of spins. If the anisotropy exists, there will be no acoustic energy branch in the system. The anisotropy constant, antiferromagnetic intralayer and interlayer coupling have important roles in a balance of the quantum competition.
基金supported by the National Basic Research Program of China(Grant Nos.2011CBA00106 and 2014CB921401)the National Natural Science Foundation of China(Grant Nos.11174342,9131208,and 11374344)
文摘Electric double-layer field effect experiments were performed on ultrathin films of La0.325Pr0.3Ca0.375MnO3, which is noted for its micrometer-scale phase separation. A clear change of resistance up to 220% was observed and the characteristic metal-insulator transition temperature Tp was also shifted. The changes of both the resistance and Tp, suggest that the electric field induced not only tuning of the carrier density but also rebalancing of the phase separation states. The change of the charge-ordered insulating phase fraction was estimated to be temperature dependent, and a maximum of 16% was achieved in the phase separation regime. This tuning effect was partially irreversible, which might be due to an oxygen vacancy migration that is driven by the huge applied electric field.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50771082 and 60776822)the Doctorate Foundation (Grant No. CX201207)+2 种基金the Graduate Starting Seed Fund of Northwestern Polytechnical University (Grant No. Z2011011)the Natural Science Foundation of Shaanxi Province, China (Grant No. 2012JM1009)the Scientific Research Program Funded by Shaanxi Provincial Educational Department, China (Grant No. 12JK0984)
文摘Ordered mesoporous carbon (OMC) and metal-doped (M-doped) OMC composites are prepared, and their electromagnetic (EM) parameters are measured. Using the measured EM parameters we calculate the EM wave absorption properties of a double-layer absorber, which is composed of OMC as an absorbing layer and M-doped OMC as the matching layer. The calculated results show that the EM wave absorption performance of OMC/OMC–Co (2.2mm/2.1mm) is improved remarkably. The obtained effective absorption bandwidth is up to 10.3 GHz and the minimum reflection loss reaches 47.6 dB at 14.3 GHz. The enhanced absorption property of OMC/OMC–Co can be attributed to the impedance match between the air and the absorber. Moreover, it can be found that for the absorber with a given matching layer, a larger value of -tanδ ε (= tan δ ε absorbing tan δε matching ) can induce better absorption performance, indicating that the difference in impedance between the absorbing layer and the matching layer plays an important role in improving the absorption property of double-layer absorbers.
文摘In this paper, we investigate the optical properties of the double-layer metal films perforated with single apertures by analysing the coupling of localized surface plasmon polaritons (LSPPs). It is found that the amplitude and the wavelength of transmission peak in such a structure can be adjusted by changing the longitudinal interval D between two films and the lateral displacements dx and dy which are parallel and perpendicular to the polarization direction of incident light, respectively. The variation of longitudinal interval D results in the redshift of transmission peak due to the change of coupling strength of LSPPs near the single apertures. The amplitude of transmission peak decreases with the increase of dy and is less than that in the case of dx, which originates from the difference in coupling manner between LSPPs and the localized natures of LSPPs.
基金supported by National Natural Science Foundation of China (No.10975026)
文摘Interaction between high-intensity pulsed ion beam (HIPIB) and a double-layer target with titanium film on top of aluminum substrate was simulated. The two-dimensional nonlinear thermal conduction equations, with the deposited energy in the target taken as source term, were derived and solved by finite differential method. As a result, the two-dimensional spatial and temporal evolution profiles of temperature were obtained for a titanium/aluminum double-layer target irradiated by a pulse of HIPIB. The effects of ion beam current density on the phase state of the target materials near the film and substrate interface were analyzed. Both titanium and aluminum were melted near the interface after a shot when the ion beam current density fell in the range of 100 A/cm2 to 200 A/cm2.
基金supported by Hi-Tech Research and Development Program of China (Grant Nos. 2007AA05Z436 and 2009AA050602)Science and Technology Support Project of Tianjin (Grant No. 08ZCKFGX03500)+3 种基金the National Basic Research Program of China (Grant Nos. 2011CB201605 and 2011CB201606)the National Natural Science Foundation of China (Grant No. 60976051)International Cooperation Project between China-Greece Government (Grant No. 2009DFA62580)Program for New Century Excellent Talents in University of China (Grant No. NCET-08-0295)
文摘Indium doped zinc oxide (ZnO:In) thin films were prepared by ultrasonic spray pyrolysis on corning eagle 2000 glass substrate. 1 and 2 at.% indium doped single-layer ZnO:In thin films with different amounts of acetic acid added in the initial solution were fabricated. The 1 at.% indium doped single-layers have triangle grains. The 2 at.% indium doped single-layer with 0.18 acetic acid adding has the resistivity of 6.82 × 10^-3 Ω. cm and particle grains. The doublelayers structure is designed to fabricate the ZnO:In thin film with low resistivity (2.58 × 10^-3 Ω. cm) and good surface morphology. It is found that the surface morphology of the double-layer ZnO:In film strongly depends on the substratelayer, and the second-layer plays a large part in the resistivity of the doublewlayer ZnO:In thin film. Both total and direct transmittances of the double-layer ZnO:In film are above 80% in the visible light region. Single junction a-Si:H solar cell based on the double-layer ZnO:In as front electrode is also investigated.
基金Project supported by the National Natural Science Foundation of China (Grant No. 51872189)the Fundamental Research Funds for the Central Universities, China (Grant No. 2018SCUH0022).
文摘A new heating method is proposed to increase the cell temperature of the 6-8 type multi-anvil apparatus without reducing the volume of the sample chamber. The double-layer heater assembly (DHA) has two layers of heaters connected in parallel. The temperature of the cell was able to reach 2500 ℃ by using 0.025 mm rhenium foils, and the temperature limit was increased by 25% compared with that of the traditional single-layer assembly. The power-temperature relationships for these two assemblies with different sizes were calibrated by using W/Re thermocouple at 20 GPa. When the volume of samples was the same, the DHA not only attained higher temperature, but also kept the holding time longer, compared to the traditional assembly. The results of more than ten experiments showed that the new 10/4 DHA with a relatively large sample size (2 mm in diameter and 4 mm in height) can work stably with the center temperature of the sample cavity exceeding 2300 ℃ under the pressure of 20 GPa.
基金supported by the National Natural Science Foundation of China(82371032,82070923)the Major Basic Research Project of the Natural Science Foundation of Shandong Province(ZR2023ZD60)+1 种基金the Taishan Scholar Program(20231255)the Academic Promotion Program of Shandong First Medical University(2019RC009).
文摘The eye,a complex organ isolated from the systemic circulation,presents significant drug delivery challenges owing to its protective mechanisms,such as the blood-retinal barrier and corneal impermeability.Conventional drug administration methods often fail to sustain therapeutic levels and may compromise patient safety and compliance.Polysaccharidebased microneedles(PSMNs)have emerged as a transformative solution for ophthalmic drug delivery.However,a comprehensive review of PSMNs in ophthalmology has not been published to date.In this review,we critically examine the synergy between polysaccharide chemistry and microneedle technology for enhancing ocular drug delivery.We provide a thorough analysis of PSMNs,summarizing the design principles,fabrication processes,and challenges addressed during fabrication,including improving patient comfort and compliance.We also describe recent advances and the performance of various PSMNs in both research and clinical scenarios.Finally,we review the current regulatory frameworks and market barriers that are relevant to the clinical and commercial advancement of PSMNs and provide a final perspective on this research area.