Defect engineering in transition metal oxides semiconductors(TMOs)is attracting considerable interest due to its potential to enhance conductivity by intentionally introducing defects that modulate the electronic stru...Defect engineering in transition metal oxides semiconductors(TMOs)is attracting considerable interest due to its potential to enhance conductivity by intentionally introducing defects that modulate the electronic structures of the materials.However,achieving a comprehensive understanding of the relationship between micro-structures and electromagnetic wave absorption capabilities remains elusive,posing a substantial challenge to the advancement of TMOs absorbers.The current research describes a process for the deposition of a MoO_(3)layer onto SiC nanowires,achieved via electro-deposition followed by high-temperature calcination.Subsequently,intentional creation of oxygen vacancies within the MoO_(3)layer was carried out,facilitating the precise adjustment of electromagnetic properties to enhance the microwave absorption performance of the material.Remarkably,the SiC@MO-t4 sample exhibited an excellent minimum reflection loss of-50.49 dB at a matching thickness of 1.27 mm.Furthermore,the SiC@MO-t6 sample exhibited an effective absorption bandwidth of 8.72 GHz with a thickness of 2.81 mm,comprehensively covering the entire Ku band.These results not only highlight the pivotal role of defect engineering in the nuanced adjustment of electromagnetic properties but also provide valuable insight for the application of defect engineering methods in broadening the spectrum of electromagnetic wave absor ption effectiveness.SiC@MO-t samples with varying concentrations of oxygen vacancies were prepared through in-situ etching of the SiC@MoO_(3)nanocomposite.The presence of oxygen vacancies plays a crucial role in adjusting the band gap and local electron distribution,which in turn enhances conductivity loss and induced polarization loss capacity.This finding reveals a novel strategy for improving the absorption properties of electromagnetic waves through defect engineering.展开更多
Aluminum samples have been analyzed by femtosecond polarization-resolved laser-induced breakdown spectroscopy (fs-PRLIBS). We compare the obtained spectra with those obtained from nanosecond PRLIBS (ns-PRLIBS). Th...Aluminum samples have been analyzed by femtosecond polarization-resolved laser-induced breakdown spectroscopy (fs-PRLIBS). We compare the obtained spectra with those obtained from nanosecond PRLIBS (ns-PRLIBS). The main specific features of fs-PRLIBS are that a lower plasma temperature leads to a low level of continuum and no species are detected from the ambient gas. Furthermore, signals obtained by fs-PRLIBS show a higher stability than those of ns-PRLIBS. However, more elements are detected in the ns-PRLIBS spectra.展开更多
It is shown that the continuum emission produced by an A1 alloy ablated by femtosecond laser pulses is much more polarized than the characteristic lines of elements. A Glan-Thomson polarizer is used in the laser-induc...It is shown that the continuum emission produced by an A1 alloy ablated by femtosecond laser pulses is much more polarized than the characteristic lines of elements. A Glan-Thomson polarizer is used in the laser-induced breakdown spectroscopy experiment to investigate the polarization effect. The use of the polarizer at its minimal transmission increases the signal-to-noise ratio. The effects of angle of detection, focal position, and pulse energy on the signal-to- noise ratio are also studied.展开更多
Pulse-burst 1064-nm picosecond azimuthal polarization beam amplification up to an average power of 16.32 W using side-pumped Nd: YAG amplifiers has been demonstrated. The maximum envelop energy as much as 16.32 mJ, co...Pulse-burst 1064-nm picosecond azimuthal polarization beam amplification up to an average power of 16.32 W using side-pumped Nd: YAG amplifiers has been demonstrated. The maximum envelop energy as much as 16.32 mJ, corresponding to a power amplification factor of 299.5%. A simple criterion was defined to help estimate the amount of depolarization in Nd:YAG amplifier stages. The degree of depolarization of the beam was 7.1% and the beam quality was measured to be M2= 3.69. The reason for the azimuthal polarization depolarization and beam quality degradation were explained theoretically and experimentally during the amplification process.展开更多
The polarization-resolved laser-induced breakdown spectroscopy (PRLIBS) technique, which can significantly reduce the polarized emission from laser plasma by placing a polarizer in front of the detector, is a powerf...The polarization-resolved laser-induced breakdown spectroscopy (PRLIBS) technique, which can significantly reduce the polarized emission from laser plasma by placing a polarizer in front of the detector, is a powerful tool to improve the line-to-continuum ratio in LIBS applications. It is shown that the continuum emission from the plasma produced through ablating an Al sample by nanosecond laser pulses is much more polarized than the discrete line emission with the singlepulse PRLIBS technique. The effects of laser fluence and detection angle on the Al polarization spectrum are systematically explored experimentally. The calculated result of the polarization spectrum as a function of laser fluence shows that it is in agreement with the experimental observations.展开更多
We have studied the characteristics of current-induced nonequilibrium spin polarization in semiconductor-nanowire/swave superconductor junctions with strong spin–orbit coupling. It was found that within some paramete...We have studied the characteristics of current-induced nonequilibrium spin polarization in semiconductor-nanowire/swave superconductor junctions with strong spin–orbit coupling. It was found that within some parameter regions the magnitude of the current-induced nonequilibrium spin polarization density in such structures will increase(or decrease) with the decrease(or increase) of the charge current density, in contrast to that found in normal spin–orbit coupled semiconductor structures. It was also found that the unusual characteristics of the current-induced nonequilibrium spin polarization in such structures can be well explained by the effect of the Andreev reflection.展开更多
Considering the interaction between excited triplet molecule and doublet radical, based on the second-order perturbation theory and the motion equation of density matrix, the polarization intensity of RTPM were theore...Considering the interaction between excited triplet molecule and doublet radical, based on the second-order perturbation theory and the motion equation of density matrix, the polarization intensity of RTPM were theoretically calculated with the overpopulated doublet spin states and quartet spin states of radical-triplet pairs as initial conditions respectively. The results of calculation indicate that the net emissive polarization and the net absorptive polarization on the radical result from the zero-field-splitting (zfs) and the multiplet A/E and E/A polarization result from hyperfine (hf) interactions of the triplet molecule. The hyperfine related A+A/E or E+E/A CIDEP on the radical were the overpopulation of the net absorptive or emissive polarization and multiplet A/E or E/A polarization..展开更多
The laser output characteristics under elliptically polarized optical feedback effect are studied. Elliptically polarized light is generated by wave plate placed in the feedback cavity. By analyzing the amplitude and ...The laser output characteristics under elliptically polarized optical feedback effect are studied. Elliptically polarized light is generated by wave plate placed in the feedback cavity. By analyzing the amplitude and phase of the laser output in the orthogonal direction, some new phenomena are firstly discovered and explained theoretically.Elliptically polarized feedback light is amplified in the gain medium in the resonator, and the direction perpendicular to the original polarization direction is easiest to oscillate. The laser intensity variation in amplitude and phase are related to the amplified mode and the anisotropy of external cavity. The theoretical analysis and experimental results agree well. Because the output characteristic of the laser has a relationship with the anisotropy of the external cavity, the phenomenon also provides a method for measuring birefringence.展开更多
Theoretical analysis and experimental research on the polarization properties of output light in gyro are carried out to investigate the phenomenon that the amplitude of an output voltage signal is modulated by dither...Theoretical analysis and experimental research on the polarization properties of output light in gyro are carried out to investigate the phenomenon that the amplitude of an output voltage signal is modulated by dither bias in laser gyros consisting of totally reflecting prisms. Taking the effect of prism stress birefringence into account, an analytical formula of the output light intensity in the gyro and the relationship between the polarization parameter and the amplitude modulation of the output signal are obtained and discussed. For the first time, the polarized power value of the output light is adopted as a basis to estimate the output signal amplitude fading extent of laser gyros. Experimental results demonstrate that when the value of polarized power of output light is below 25.5% of that in ideal static case, the standard error is over 0.0337 dBm, and the displacement extent of the prism is higher than 53% of the radius of the beam waist in the gyro cavity, the amplitude modulation extent of gyro output signal can reach up to 16%, which badly influences the measurement accuracy of the laser gyro. Using this polarized power detecting measurement method can repair the gyro immediately during its fabrication process, improve the testing and production efficiency and shorten the product development cycle.展开更多
A theoretical model of quasi-three-level laser system is developed, in which both the thermally induced depolarization loss and the effect of energy-transfer upconversion are taken into account. Based on the theoretic...A theoretical model of quasi-three-level laser system is developed, in which both the thermally induced depolarization loss and the effect of energy-transfer upconversion are taken into account. Based on the theoretical investigation of the influences of output transmission and incident pump power on thermally induced depolarization loss, the output performance of 946 nm linearly polarized Nd:YAG laser is experimentally studied. By optimizing the transmission of output coupler, a 946 nm linearly polarized continuous-wave single-transverse-mode laser with an output power of 4.2 W and an optical-optical conversion efficiency of 16.8% is obtained, and the measured beam quality factors are M2 = 1.13 and My2 = 1.21. The theoretical prediction is in good agreement with the experimental result.展开更多
We propose and numerically demonstrate a tunable plasmon-induced transparency(PIT) phenomenon based on asymmetric H-shaped graphene metamaterials. The tunable PIT effect is realized through varying the applied polariz...We propose and numerically demonstrate a tunable plasmon-induced transparency(PIT) phenomenon based on asymmetric H-shaped graphene metamaterials. The tunable PIT effect is realized through varying the applied polarization angles rather than changing the structure geometry. By simply adjusting the polarization angle, the transmission spectra can be controlled between the switch-on state and switch-off state. The physical mechanism of the induced transparency is revealed from magnetic dipole inductive coupling and phase coupling. Importantly, by varying the Fermi energy of the graphene or the refractive index of the substrate, the resonant position of the PIT can be dynamically controlled and the maximum modulation depths can reach up to 60.7%. The sensitivity(nm/RIU) of the graphene structure, which is the shift of resonance wavelength per unit change of refractive index, is 5619.56 nm/RIU. Moreover, we also extend our research to the x-axis symmetric H-shaped structure, and the tunable PIT transmission window can also be realized. The physical mechanism of the induced transparency is revealed from the electric dipole hybridization coupling. Our designed H-shaped graphene-based structures is a promising candidate for compact elements such as tunable sensors, switches and slow-light devices.展开更多
We investigated the nonsequential double ionization(NSDI)in Ar by two-color elliptically polarized laser field with a three-dimensional(3D)classical ensemble method.We study the relative phase effect of NSDI and disti...We investigated the nonsequential double ionization(NSDI)in Ar by two-color elliptically polarized laser field with a three-dimensional(3D)classical ensemble method.We study the relative phase effect of NSDI and distinguish two particular recollision channels in NSDI,which are recollision–impact ionization(RII)and recollision-induced excitation with subsequent ionization(RESI),according to the delay-time between the recollision and the final double ionization.The numerical results indicate that the ion momentum distribution is changed and the triangle structure is more obvious with the decrease of the relative phase.We also demonstrate that the RESI process always dominates in the whole double ionization process and the ratio of RESI and RII channels can be influenced by the relative phase.展开更多
基金supported by the National Natural Science Foundation of China under Grant Nos. 52072196, 52002200, 52102106, 52202262, 22379081, 22379080Major Basic Research Program of Natural Science Foundation of Shandong Province under Grant No. ZR2020ZD09+1 种基金the Natural Science Foundation of Shandong Province under Grant Nos. ZR2020QE063, ZR2022ME090, ZR2023QE059. Moreoversupported by the Visiting Scholar Fellowship Funding for Teachers in Shandong Province’s General Undergraduate Institutions
文摘Defect engineering in transition metal oxides semiconductors(TMOs)is attracting considerable interest due to its potential to enhance conductivity by intentionally introducing defects that modulate the electronic structures of the materials.However,achieving a comprehensive understanding of the relationship between micro-structures and electromagnetic wave absorption capabilities remains elusive,posing a substantial challenge to the advancement of TMOs absorbers.The current research describes a process for the deposition of a MoO_(3)layer onto SiC nanowires,achieved via electro-deposition followed by high-temperature calcination.Subsequently,intentional creation of oxygen vacancies within the MoO_(3)layer was carried out,facilitating the precise adjustment of electromagnetic properties to enhance the microwave absorption performance of the material.Remarkably,the SiC@MO-t4 sample exhibited an excellent minimum reflection loss of-50.49 dB at a matching thickness of 1.27 mm.Furthermore,the SiC@MO-t6 sample exhibited an effective absorption bandwidth of 8.72 GHz with a thickness of 2.81 mm,comprehensively covering the entire Ku band.These results not only highlight the pivotal role of defect engineering in the nuanced adjustment of electromagnetic properties but also provide valuable insight for the application of defect engineering methods in broadening the spectrum of electromagnetic wave absor ption effectiveness.SiC@MO-t samples with varying concentrations of oxygen vacancies were prepared through in-situ etching of the SiC@MoO_(3)nanocomposite.The presence of oxygen vacancies plays a crucial role in adjusting the band gap and local electron distribution,which in turn enhances conductivity loss and induced polarization loss capacity.This finding reveals a novel strategy for improving the absorption properties of electromagnetic waves through defect engineering.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11211120156, 11274053, 11074027, 61178022, and 60978014)the Science and Technology Department of Jilin Province, China (Grant Nos. 20100521, 20100168, and 20111812)the SRF for ROCS, SEM
文摘Aluminum samples have been analyzed by femtosecond polarization-resolved laser-induced breakdown spectroscopy (fs-PRLIBS). We compare the obtained spectra with those obtained from nanosecond PRLIBS (ns-PRLIBS). The main specific features of fs-PRLIBS are that a lower plasma temperature leads to a low level of continuum and no species are detected from the ambient gas. Furthermore, signals obtained by fs-PRLIBS show a higher stability than those of ns-PRLIBS. However, more elements are detected in the ns-PRLIBS spectra.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60978014, 11074027, and 61178022)the Funds from Jilin Provincial Science and Technology Department, China (Grant Nos. 20100521, 20100168, and 20111812)+1 种基金the Science and Technology Division of Changchun City, China (Grant No. 09GH01)the Scientific Research Foundation for the Returned Overseas Chinese Scholars of State Education Ministry, China
文摘It is shown that the continuum emission produced by an A1 alloy ablated by femtosecond laser pulses is much more polarized than the characteristic lines of elements. A Glan-Thomson polarizer is used in the laser-induced breakdown spectroscopy experiment to investigate the polarization effect. The use of the polarizer at its minimal transmission increases the signal-to-noise ratio. The effects of angle of detection, focal position, and pulse energy on the signal-to- noise ratio are also studied.
基金Project supported by the National Natural Science Foundation of China(Grant No.U1631240)the Education Commission Program of BeijingBeijing Natural Science Foundation(Grant No.KZ201510005001)
文摘Pulse-burst 1064-nm picosecond azimuthal polarization beam amplification up to an average power of 16.32 W using side-pumped Nd: YAG amplifiers has been demonstrated. The maximum envelop energy as much as 16.32 mJ, corresponding to a power amplification factor of 299.5%. A simple criterion was defined to help estimate the amount of depolarization in Nd:YAG amplifier stages. The degree of depolarization of the beam was 7.1% and the beam quality was measured to be M2= 3.69. The reason for the azimuthal polarization depolarization and beam quality degradation were explained theoretically and experimentally during the amplification process.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60978014, 11074027, 61178022, 11274053, and 11211120156)the Fundsfrom Science and Technology Department of Jilin Province, China (Grant Nos. 20090523, 20100521, 20100168, and 20111812)Funds from Education Department of Jilin Province
文摘The polarization-resolved laser-induced breakdown spectroscopy (PRLIBS) technique, which can significantly reduce the polarized emission from laser plasma by placing a polarizer in front of the detector, is a powerful tool to improve the line-to-continuum ratio in LIBS applications. It is shown that the continuum emission from the plasma produced through ablating an Al sample by nanosecond laser pulses is much more polarized than the discrete line emission with the singlepulse PRLIBS technique. The effects of laser fluence and detection angle on the Al polarization spectrum are systematically explored experimentally. The calculated result of the polarization spectrum as a function of laser fluence shows that it is in agreement with the experimental observations.
基金Project supported by the National Natural Science Foundation of China(Grant No.11474106)
文摘We have studied the characteristics of current-induced nonequilibrium spin polarization in semiconductor-nanowire/swave superconductor junctions with strong spin–orbit coupling. It was found that within some parameter regions the magnitude of the current-induced nonequilibrium spin polarization density in such structures will increase(or decrease) with the decrease(or increase) of the charge current density, in contrast to that found in normal spin–orbit coupled semiconductor structures. It was also found that the unusual characteristics of the current-induced nonequilibrium spin polarization in such structures can be well explained by the effect of the Andreev reflection.
文摘Considering the interaction between excited triplet molecule and doublet radical, based on the second-order perturbation theory and the motion equation of density matrix, the polarization intensity of RTPM were theoretically calculated with the overpopulated doublet spin states and quartet spin states of radical-triplet pairs as initial conditions respectively. The results of calculation indicate that the net emissive polarization and the net absorptive polarization on the radical result from the zero-field-splitting (zfs) and the multiplet A/E and E/A polarization result from hyperfine (hf) interactions of the triplet molecule. The hyperfine related A+A/E or E+E/A CIDEP on the radical were the overpopulation of the net absorptive or emissive polarization and multiplet A/E or E/A polarization..
基金Supported by the Program for Changjiang Scholars and Innovative Research Team in University under Grant No IRT160R7
文摘The laser output characteristics under elliptically polarized optical feedback effect are studied. Elliptically polarized light is generated by wave plate placed in the feedback cavity. By analyzing the amplitude and phase of the laser output in the orthogonal direction, some new phenomena are firstly discovered and explained theoretically.Elliptically polarized feedback light is amplified in the gain medium in the resonator, and the direction perpendicular to the original polarization direction is easiest to oscillate. The laser intensity variation in amplitude and phase are related to the amplified mode and the anisotropy of external cavity. The theoretical analysis and experimental results agree well. Because the output characteristic of the laser has a relationship with the anisotropy of the external cavity, the phenomenon also provides a method for measuring birefringence.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2006AA12Z144)
文摘Theoretical analysis and experimental research on the polarization properties of output light in gyro are carried out to investigate the phenomenon that the amplitude of an output voltage signal is modulated by dither bias in laser gyros consisting of totally reflecting prisms. Taking the effect of prism stress birefringence into account, an analytical formula of the output light intensity in the gyro and the relationship between the polarization parameter and the amplitude modulation of the output signal are obtained and discussed. For the first time, the polarized power value of the output light is adopted as a basis to estimate the output signal amplitude fading extent of laser gyros. Experimental results demonstrate that when the value of polarized power of output light is below 25.5% of that in ideal static case, the standard error is over 0.0337 dBm, and the displacement extent of the prism is higher than 53% of the radius of the beam waist in the gyro cavity, the amplitude modulation extent of gyro output signal can reach up to 16%, which badly influences the measurement accuracy of the laser gyro. Using this polarized power detecting measurement method can repair the gyro immediately during its fabrication process, improve the testing and production efficiency and shorten the product development cycle.
基金Project supported by the National Key R&D Program of China(Grant No.2016YFA0301401)the Fund for Shanxi "331 Project" Key Subjects Construction,China(Grant No.1331KS)
文摘A theoretical model of quasi-three-level laser system is developed, in which both the thermally induced depolarization loss and the effect of energy-transfer upconversion are taken into account. Based on the theoretical investigation of the influences of output transmission and incident pump power on thermally induced depolarization loss, the output performance of 946 nm linearly polarized Nd:YAG laser is experimentally studied. By optimizing the transmission of output coupler, a 946 nm linearly polarized continuous-wave single-transverse-mode laser with an output power of 4.2 W and an optical-optical conversion efficiency of 16.8% is obtained, and the measured beam quality factors are M2 = 1.13 and My2 = 1.21. The theoretical prediction is in good agreement with the experimental result.
基金Project supported by the Key Science and Technology Research Project of Henan Province,China(Grant Nos.162102210164 and 1721023100107)the Natural Science Foundation of Henan Educational Committee,China(Grant No.17A140002)
文摘We propose and numerically demonstrate a tunable plasmon-induced transparency(PIT) phenomenon based on asymmetric H-shaped graphene metamaterials. The tunable PIT effect is realized through varying the applied polarization angles rather than changing the structure geometry. By simply adjusting the polarization angle, the transmission spectra can be controlled between the switch-on state and switch-off state. The physical mechanism of the induced transparency is revealed from magnetic dipole inductive coupling and phase coupling. Importantly, by varying the Fermi energy of the graphene or the refractive index of the substrate, the resonant position of the PIT can be dynamically controlled and the maximum modulation depths can reach up to 60.7%. The sensitivity(nm/RIU) of the graphene structure, which is the shift of resonance wavelength per unit change of refractive index, is 5619.56 nm/RIU. Moreover, we also extend our research to the x-axis symmetric H-shaped structure, and the tunable PIT transmission window can also be realized. The physical mechanism of the induced transparency is revealed from the electric dipole hybridization coupling. Our designed H-shaped graphene-based structures is a promising candidate for compact elements such as tunable sensors, switches and slow-light devices.
基金Project supported by the National Natural Science Foundation of China(Grant No.61575077)the Natural Science Foundation of Jilin Province of China(Grant No.20180101225JC)
文摘We investigated the nonsequential double ionization(NSDI)in Ar by two-color elliptically polarized laser field with a three-dimensional(3D)classical ensemble method.We study the relative phase effect of NSDI and distinguish two particular recollision channels in NSDI,which are recollision–impact ionization(RII)and recollision-induced excitation with subsequent ionization(RESI),according to the delay-time between the recollision and the final double ionization.The numerical results indicate that the ion momentum distribution is changed and the triangle structure is more obvious with the decrease of the relative phase.We also demonstrate that the RESI process always dominates in the whole double ionization process and the ratio of RESI and RII channels can be influenced by the relative phase.