To address the poor performance of commonly used intelligent optimization algorithms in solving location problems—specifically regarding effectiveness,efficiency,and stability—this study proposes a novel location al...To address the poor performance of commonly used intelligent optimization algorithms in solving location problems—specifically regarding effectiveness,efficiency,and stability—this study proposes a novel location allocation method for the delivery sites to deliver daily necessities during epidemic quarantines.After establishing the optimization objectives and constraints,we developed a relevant mathematical model based on the collected data and utilized traditional intelligent optimization algorithms to obtain Pareto optimal solutions.Building on the characteristics of these Pareto front solutions,we introduced an improved clustering algorithm and conducted simulation experiments using data from Changchun City.The results demonstrate that the proposed algorithm outperforms traditional intelligent optimization algorithms in terms of effectiveness,efficiency,and stability,achieving reductions of approximately 12%and 8%in time and labor costs,respectively,compared to the baseline algorithm.展开更多
develop a mentation This paper considers the priority facility primal-dual 3-approximation algorithm for procedure, the authors further improve the location problem with penalties: The authors this problem. Combining...develop a mentation This paper considers the priority facility primal-dual 3-approximation algorithm for procedure, the authors further improve the location problem with penalties: The authors this problem. Combining with the greedy aug- previous ratio 3 to 1.8526.展开更多
Under the scenario of dense targets in clutter, a multi-layer optimal data correlation algorithm is proposed. This algorithm eliminates a large number of false location points from the assignment process by rough corr...Under the scenario of dense targets in clutter, a multi-layer optimal data correlation algorithm is proposed. This algorithm eliminates a large number of false location points from the assignment process by rough correlations before we calculate the correlation cost, so it avoids the operations for the target state estimate and the calculation of the correlation cost for the false correlation sets. In the meantime, with the elimination of these points in the rough correlation, the disturbance from the false correlations in the assignment process is decreased, so the data correlation accuracy is improved correspondingly. Complexity analyses of the new multi-layer optimal algorithm and the traditional optimal assignment algorithm are given. Simulation results show that the new algorithm is feasible and effective.展开更多
In equipment integrated logistics support(ILS), the supply capability of spare parts is a significant factor. There are lots of depots in the traditional support system, which makes too many redundant spare parts and ...In equipment integrated logistics support(ILS), the supply capability of spare parts is a significant factor. There are lots of depots in the traditional support system, which makes too many redundant spare parts and causes high cost of support. Meanwhile,the inconsistency among depots makes it difficult to manage spare parts. With the development of information technology and transportation, the supply network has become more efficient. In order to further improve the efficiency of supply-support work and the availability of the equipment system, building a system of one centralized depot with multiple depots becomes an appropriate way.In this case, location selection of the depots including centralized depots and multiple depots becomes a top priority in the support system. This paper will focus on the location selection problem of centralized depots considering ILS factors. Unlike the common location selection problem, depots in ILS require a higher service level. Therefore, it becomes desperately necessary to take the high requirement of the mission into account while determining location of depots. Based on this, we raise an optimal depot location model. First, the expected transportation cost is calculated.Next, factors in ILS such as response time, availability and fill rate are analyzed for evaluating positions of open depots. Then, an optimization model of depot location is developed with the minimum expected cost of transportation as objective and ILS factors as constraints. Finally, a numerical case is studied to prove the validity of the model by using the genetic algorithm. Results show that depot location obtained by this model can guarantee the effectiveness and capability of ILS well.展开更多
自动导引车(Automatic Guided Vehicle,AGV)作为智能制造系统的重要组成部分之一,为智能制造系统提供柔性物料搬运,其无人化趋势已是必然。针对此,这里研究开发了基于同步定位与建图(Simultaneous Localization and Map⁃ping,SLAM)导航...自动导引车(Automatic Guided Vehicle,AGV)作为智能制造系统的重要组成部分之一,为智能制造系统提供柔性物料搬运,其无人化趋势已是必然。针对此,这里研究开发了基于同步定位与建图(Simultaneous Localization and Map⁃ping,SLAM)导航的堆垛垛式叉车AGV,提出了一种基于IEPF算法(Iterative End Point Fit,IEPF)以及最小二乘法的雷达点云线段提取方法,在此基础上,研究基于线段特征匹配的SLAM定位算法,并将设计的SLAM导航算法移植到试验车测试。测试结果表明这里设计的基于激光SLAM导航的堆垛式叉车AGV具有较好的稳定性,能够实现横向7mm、纵向13mm的定位误差,为无人叉车的研究提供了技术支撑。展开更多
含分布式电源(distributed generation,DG)的双极直流配电系统是未来配电网发展的重要形态之一,但由于DG接入方式、数量、容量、位置以及系统正负极负荷不平衡对系统静暂态电压稳定性影响不同,目前相关研究尚缺乏对此问题的分析。该文...含分布式电源(distributed generation,DG)的双极直流配电系统是未来配电网发展的重要形态之一,但由于DG接入方式、数量、容量、位置以及系统正负极负荷不平衡对系统静暂态电压稳定性影响不同,目前相关研究尚缺乏对此问题的分析。该文首先将DG等效为受控电流源,推导分析了DG接入方式、容量及负荷不平衡度对系统静态下电压不平衡度的影响;其次,基于单极故障下光伏型DG与交流电网暂态放电情况,推导分析了DG接入方式、位置、容量与系统暂态电压稳定性的关系;再者,基于多目标蜣螂优化算法提出以系统静暂态电压稳定性与DG接入成本为目标的DG接入方案规划方法,采用熵权逼近理想解排序法(technique for order preference by similarity to ideal solution,TOPSIS)法筛选出DG接入的最佳折中方案。最后在Matlab/Simulink仿真平台搭建改进IEEE14、IEEE33双极直流配电系统验证该文所提优化方法的普适性和有效性。展开更多
基金National Natural Science Foundation of China(62202477)。
文摘To address the poor performance of commonly used intelligent optimization algorithms in solving location problems—specifically regarding effectiveness,efficiency,and stability—this study proposes a novel location allocation method for the delivery sites to deliver daily necessities during epidemic quarantines.After establishing the optimization objectives and constraints,we developed a relevant mathematical model based on the collected data and utilized traditional intelligent optimization algorithms to obtain Pareto optimal solutions.Building on the characteristics of these Pareto front solutions,we introduced an improved clustering algorithm and conducted simulation experiments using data from Changchun City.The results demonstrate that the proposed algorithm outperforms traditional intelligent optimization algorithms in terms of effectiveness,efficiency,and stability,achieving reductions of approximately 12%and 8%in time and labor costs,respectively,compared to the baseline algorithm.
基金supported by the National Natural Science Foundation of China under Grant No.11371001
文摘develop a mentation This paper considers the priority facility primal-dual 3-approximation algorithm for procedure, the authors further improve the location problem with penalties: The authors this problem. Combining with the greedy aug- previous ratio 3 to 1.8526.
基金This project was supported by the National Natural Science Foundation of China (60672139, 60672140)the Excellent Ph.D. Paper Author Foundation of China (200237)the Natural Science Foundation of Shandong (2005ZX01).
文摘Under the scenario of dense targets in clutter, a multi-layer optimal data correlation algorithm is proposed. This algorithm eliminates a large number of false location points from the assignment process by rough correlations before we calculate the correlation cost, so it avoids the operations for the target state estimate and the calculation of the correlation cost for the false correlation sets. In the meantime, with the elimination of these points in the rough correlation, the disturbance from the false correlations in the assignment process is decreased, so the data correlation accuracy is improved correspondingly. Complexity analyses of the new multi-layer optimal algorithm and the traditional optimal assignment algorithm are given. Simulation results show that the new algorithm is feasible and effective.
基金supported by the Science Challenge Project(TZ2018007)the National Natural Science Foundation of China(71671009+2 种基金 61871013 61573041 61573043)
文摘In equipment integrated logistics support(ILS), the supply capability of spare parts is a significant factor. There are lots of depots in the traditional support system, which makes too many redundant spare parts and causes high cost of support. Meanwhile,the inconsistency among depots makes it difficult to manage spare parts. With the development of information technology and transportation, the supply network has become more efficient. In order to further improve the efficiency of supply-support work and the availability of the equipment system, building a system of one centralized depot with multiple depots becomes an appropriate way.In this case, location selection of the depots including centralized depots and multiple depots becomes a top priority in the support system. This paper will focus on the location selection problem of centralized depots considering ILS factors. Unlike the common location selection problem, depots in ILS require a higher service level. Therefore, it becomes desperately necessary to take the high requirement of the mission into account while determining location of depots. Based on this, we raise an optimal depot location model. First, the expected transportation cost is calculated.Next, factors in ILS such as response time, availability and fill rate are analyzed for evaluating positions of open depots. Then, an optimization model of depot location is developed with the minimum expected cost of transportation as objective and ILS factors as constraints. Finally, a numerical case is studied to prove the validity of the model by using the genetic algorithm. Results show that depot location obtained by this model can guarantee the effectiveness and capability of ILS well.
文摘自动导引车(Automatic Guided Vehicle,AGV)作为智能制造系统的重要组成部分之一,为智能制造系统提供柔性物料搬运,其无人化趋势已是必然。针对此,这里研究开发了基于同步定位与建图(Simultaneous Localization and Map⁃ping,SLAM)导航的堆垛垛式叉车AGV,提出了一种基于IEPF算法(Iterative End Point Fit,IEPF)以及最小二乘法的雷达点云线段提取方法,在此基础上,研究基于线段特征匹配的SLAM定位算法,并将设计的SLAM导航算法移植到试验车测试。测试结果表明这里设计的基于激光SLAM导航的堆垛式叉车AGV具有较好的稳定性,能够实现横向7mm、纵向13mm的定位误差,为无人叉车的研究提供了技术支撑。
文摘含分布式电源(distributed generation,DG)的双极直流配电系统是未来配电网发展的重要形态之一,但由于DG接入方式、数量、容量、位置以及系统正负极负荷不平衡对系统静暂态电压稳定性影响不同,目前相关研究尚缺乏对此问题的分析。该文首先将DG等效为受控电流源,推导分析了DG接入方式、容量及负荷不平衡度对系统静态下电压不平衡度的影响;其次,基于单极故障下光伏型DG与交流电网暂态放电情况,推导分析了DG接入方式、位置、容量与系统暂态电压稳定性的关系;再者,基于多目标蜣螂优化算法提出以系统静暂态电压稳定性与DG接入成本为目标的DG接入方案规划方法,采用熵权逼近理想解排序法(technique for order preference by similarity to ideal solution,TOPSIS)法筛选出DG接入的最佳折中方案。最后在Matlab/Simulink仿真平台搭建改进IEEE14、IEEE33双极直流配电系统验证该文所提优化方法的普适性和有效性。