期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Doping effects of manganese on the catalytic performance and structure of NiMgO catalysts for controllabe synthesis of multi-walled carbon nanotubes 被引量:4
1
作者 Maofei Ran Wei Chu +3 位作者 Yan Liu Dong Liu Chang Zhang Jiae Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第6期781-788,共8页
Doping effects of manganese (Mn) on catalytic performance and structure evolution of NiMgO catalysts for synthesis of multi-walled carbon nanotubes (MWCNTs) from methane were investigated for the first time. Addit... Doping effects of manganese (Mn) on catalytic performance and structure evolution of NiMgO catalysts for synthesis of multi-walled carbon nanotubes (MWCNTs) from methane were investigated for the first time. Addition of Mn in NiMgO catalyst can greatly improve the MWCNTs yield. Mno.2NiMgO catalyst among the tested ones gives the highest MWCNTs yield as 2244%, which is two times higher than that of the catalyst without Mn. The structure evolution, reduction behaviors and surface chemical properties of MnNiMgO catalysts with various Mn contents were studied in detail. It was found that the stable solid solution of NiMgO2 formed in NiMgO catalyst was disturbed by the addition of Mn. Instead, another solid solution of MnMg608 is formed. More amount of Ni can be reduced and dispersed on the catalyst surface to be acted as active sites. Importantly, the changes of Ni content on the surface are correlated with the Ni particle size and the outer diameter of MWCNTs, suggesting the controllable synthesis of MWCNTs over MnNiMgO catalysts. 展开更多
关键词 doping effect MANGANESE NiMgO catalyst controllable synthesis carbon nanotubes
在线阅读 下载PDF
Doping effect on the structure and physical properties of quasi-one-dimensional compounds Ba_(9)Co_(3)(Se_(1−x)S_(x))_(15)(x=0-0.2)
2
作者 Lei Duan Xian-Cheng Wang +9 位作者 Jun Zhang Jian-Fa Zhao Wen-Min Li Li-Peng Cao Zhi-Wei Zhao Changjiang Xiao Ying Ren Shun Wang Jinlong Zhu Chang-Qing Jin 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第10期436-441,共6页
A series of samples of Ba_(9)Co_(3)(Se_(1−x)S_(x))_(15)(x=0,0.05,0.1,0.15,0.2)with quasi-one-dimensional(1D)structure were successfully synthesized under high-temperature and high-pressure conditions.The influence of ... A series of samples of Ba_(9)Co_(3)(Se_(1−x)S_(x))_(15)(x=0,0.05,0.1,0.15,0.2)with quasi-one-dimensional(1D)structure were successfully synthesized under high-temperature and high-pressure conditions.The influence of partial substitution of S for Se on the structure,electronic transport,and magnetic properties of Ba_(9)Co_(3)(Se_(1−x)S_(x))_(15) has been investigated in detail.The x-ray diffraction data shows that the lattice constant decreases linearly with increasing S-doping level,which follows the Vegrad’s law.The doped S atoms preferentially occupy the site of Se atoms in CoSe6 octahedron.Physical properties measurements indicate that all the samples of Ba_(9)Co_(3)(Se_(1−x)S_(x))_(15) are semiconducting and display spin glass behavior.As the replacement of Se by smaller size S,although the inter-chain distance decreases,the electronic hopping between CoSe/S6 chains is weakened and leads to an increase of band gap from 0.75 eV to 0.86 eV,since the S-3p electrons are more localized than Se-4p ones.Ba_(9)Co_(3)(Se_(1−x)S_(x))_(15) exhibits 1D conducting chain characteristic. 展开更多
关键词 doping effect one-dimensional chain spin glass high-pressure synthesis
在线阅读 下载PDF
Doping Effect of Co at Ag Sites in Antiperovskite Mn3AgN Compounds
3
作者 褚立华 王聪 +5 位作者 孙莹 李美成 万子裴 王宇 窦尚轶 楚月 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第4期126-129,共4页
Antiperovskite compounds Mn3Ag1-xCoxN (x =0.2, 0.5 and 0.8) are synthesized and the doping effect of the magnetic element Co at the Ag site is investigated. The crystal structure is not changed by the introduction o... Antiperovskite compounds Mn3Ag1-xCoxN (x =0.2, 0.5 and 0.8) are synthesized and the doping effect of the magnetic element Co at the Ag site is investigated. The crystal structure is not changed by the introduction of Co. However, with the increase of the content of Co, the spin reorientation gradually disappears and the antiferromagnetic transition changes to the ferromagnetic transition at the elevated temperature when x = 0.8. In addition, all of the magnetic phase transitions at the elevated temperature are always accompanied by the abnormal thermal expansion behaviors and an entropy change. Moreover, when x = 0.8, the coefficient of linear expansion is -1.89 × 10^-6 K^-1 (290-310K, △T =20 K), which is generally considered as the low thermal expansion. 展开更多
关键词 AG CO doping effect of Co at Ag Sites in Antiperovskite Mn3AgN Compounds MN
在线阅读 下载PDF
Selective core-shell doping enabling high performance 4.6 V-LiCoO_(2)
4
作者 Yueming Xia Jianrui Feng +6 位作者 Jinhui Li Yan Li Zhengfeng Zhang Xiaoqi Wang Jianli Shao Manling Sui Pengfei Yan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期684-693,I0015,共11页
Constructing robust surface and bulk structure is the prerequisite for realizing high performance high voltage LiCoO_(2)(LCO).Herein,we manage to synthesize a surface Mg-doping and bulk Al-doping coreshell structured ... Constructing robust surface and bulk structure is the prerequisite for realizing high performance high voltage LiCoO_(2)(LCO).Herein,we manage to synthesize a surface Mg-doping and bulk Al-doping coreshell structured LCO,which demonstrates excellent cycling performance.Half-cell shows 94.2%capacity retention after 100 cycles at 3.0-4.6 V(vs.Li/Li^(+))cycling,and no capacity decay after 300 cycles for fullcell test(3.0-4.55 V).Based on comprehensive microanalysis and theoretical calculations,the degradation mechanisms and doping effects are systematically revealed.For the undoped LCO,high voltage cycling induces severe interfacial and bulk degradations,where cracks,stripe defects,fatigue H2 phase,and spinel phase are identified in grain bulk.For the doped LCO,Mg-doped surface shell can suppress the interfacial degradations,which not only stabilizes the surface structure by forming a thin rock-salt layer but also significantly improves the electronic conductivity,thus enabling superior rate performance.Bulk Al-doping can suppress the lattice"breathing"effect and the detrimental H3 to H1-3 phase transition,which minimizes the internal strain and defects growth,maintaining the layered structure after prolonged cycling.Combining theoretical calculations,this work deepens our understanding of the doping effects of Mg and Al,which is valuable in guiding the future material design of high voltage LCO. 展开更多
关键词 Lithium-ion battery doping effect Failure mechanism High-voltage LiCoO_(2) Electron microscopy
在线阅读 下载PDF
Effects of Doping on the Magnetic Properties and Frustration of Hexagonal YMn0.9A0.1O3(A=Al,Fe,and Cu) 被引量:1
5
作者 肖利霞 金昭 +6 位作者 夏正才 时丽然 黄俊伟 陈柏蓉 尚翠 魏蒙 龙卓 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第1期145-149,共5页
The doping effects on the frustration and the magnetic properties in hexagonal compounds ot YMn0.9A0.1O3 (A=A1, Fe and Cu) are investigated. Experimental results indicate that both the non-magnetic and magnetic ion ... The doping effects on the frustration and the magnetic properties in hexagonal compounds ot YMn0.9A0.1O3 (A=A1, Fe and Cu) are investigated. Experimental results indicate that both the non-magnetic and magnetic ion dopants lead to the increase of magnetic moments and the decrease of the absolute value of Curie-Weiss temperature (|θcw|)- Compared with pure YMnOa, the geometrical frustration of YMn0.9 A0. 1O3 is greatly suppressed and the magnetic coupling in that exhibits dopant-dependent. In addition, for the doped YMno.gAo.103, the antiferromagnetic transition temperature (TN) is also suppressed slightly, which shows an abnormal dilution effect and it may be ascribed to the reduction of frustration due to the chemical substitution. 展开更多
关键词 net effects of doping on the Magnetic Properties and Frustration of Hexagonal YMn O3 A FE AFM AL
在线阅读 下载PDF
Effect of Chemical Doping on the Electronic Transport Properties of Tailoring Graphene Nanoribbons 被引量:1
6
作者 Yang Liu Cai-Juan Xia +3 位作者 Bo-Qun Zhang Ting-Ting Zhang Yan Cui Zhen-Yang Hu 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第6期62-65,共4页
The electronic transport properties of a molecular junction based on doping tailoring armchair-type graphene nanoribbons(AGNRs)with different widths are investigated by applying the non-equilibrium Green's function... The electronic transport properties of a molecular junction based on doping tailoring armchair-type graphene nanoribbons(AGNRs)with different widths are investigated by applying the non-equilibrium Green's function formalism combined with first-principles density functional theory.The calculated results show that the width and doping play significant roles in the electronic transport properties of the molecular junction.A higher current can be obtained for the molecular junctions with the tailoring AGNRs with W=11.Furthermore,the current of boron-doped tailoring AGNRs with widths W=7 is nearly four times larger than that of the undoped one,which can be potentially useful for the design of high performance electronic devices. 展开更多
关键词 effect of Chemical doping on the Electronic Transport Properties of Tailoring Graphene Nanoribbons
在线阅读 下载PDF
Effect of Crystallinity of Fullerene Derivatives on Doping Density in the Organic Bulk Heterojunction Layer in Polymer Solar Cells
7
作者 刘倩 何志群 +3 位作者 梁春军 赵勇 肖维康 李丹 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第5期103-106,共4页
Polymer solar cells (PSCs) based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) are fabricated by using 1,8-diiodooctane (DIO) as a solvent additive to control the dop... Polymer solar cells (PSCs) based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) are fabricated by using 1,8-diiodooctane (DIO) as a solvent additive to control the doping density of the PSCs. It is shown that the processing of DIO does not change the doping density of the P3HT phase, while it causes a dramatic reduction of the doping density of the PCBM phase, which decreases the doping density of the whole blend layer from 3.7 × 10^16 cm-3 to 1.2 ×10^16 cm-3. The reduction of the doping density in the PCBM phase originates from the increasing crystallinity of PCBM with DIO addition, and it leads to a decreasing doping density in the blend film and improves the short circuit current of the PSCs. 展开更多
关键词 HT effect of Crystallinity of Fullerene Derivatives on doping Density in the Organic Bulk Heterojunction Layer in Polymer Solar Cells DIO
在线阅读 下载PDF
Doping of group IVB elements for nickel-rich cobalt-free cathodes 被引量:1
8
作者 Shengnan Guo Xincheng Lei +9 位作者 Jiayi Wang Jie Su Yingying Wang Xiaozhi Liu Pengxiang Ji Kangning Zhao Xuefeng Wang Lin Gu Zhenpeng Yao Dong Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期559-568,I0012,共11页
Hetero-element doping is a promising strategy to improve the cycling stability of nickel-rich cobalt-free cathodes for the next-generation high energy-density Li ion batteries.To make doping effective,it is important ... Hetero-element doping is a promising strategy to improve the cycling stability of nickel-rich cobalt-free cathodes for the next-generation high energy-density Li ion batteries.To make doping effective,it is important to understand the mechanism of how the dopants regulate the electronic band,lattice parameter adjusting,or hetero-phase formation to achieve high stability.In this study,we investigate LiNi_(0.9)Mn_(0.1)O_(2)cathodes doped with IVB grouping elements via multiple characterization techniques.By utilizing in situ XRD and TEM methods,we found that the stronger Ti-O bond effectively improves the cathode stability via a dual protection mechanism.Specifically,the bulk lattice of cathode is wellpreserved during cycling as a result of the suppressed H_(2)-H_(3)phase transition,while a in situ formed Ti-rich surface layer can prevent continuous surface degradation.As a result,the 5%Ti doped LiNi_(0.9)Mn_(0.1)O_(2)cathode exhibits a high capacity retention of 96%after 100 cycles.Whereas,despite IVB group elements Zr and Hf have stronger bonding energy with oxygen,their larger ionic radii actually impede their diffusion into the cathode,thereby they can not improve the cycling stability.Our findings uncover the functional origin of doped elements with their dynamic modification on cathode structure,providing mechanistic insights into the design of nickel-rich cobalt-free cathodes. 展开更多
关键词 Li ion battery Layered cathode Cycling stability doping effect In situXRD
在线阅读 下载PDF
Effect of Mn substitution on superconductivity in iron selenide (Li, Fe)OHFeSe single crystals
9
作者 Yiyuan Mao Zian Li +12 位作者 Huaxue Zhou Mingwei Ma Ke Chai Shunli Ni Shaobo Liu Jinpeng Tian Yulong Huang Jie Yuan Kui Jin Xiaoli Dong Fang Zhou Jianqi Li ZhongxianZhao 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第7期492-496,共5页
We synthesize a series of Mn substituted (Li, Fe)OHFeSe superconductor single crystals via a modified ion-exchange method, with the Mn concentration z (the atomic ratio of Mn:Se) ranging from 0 to 0.07. The distr... We synthesize a series of Mn substituted (Li, Fe)OHFeSe superconductor single crystals via a modified ion-exchange method, with the Mn concentration z (the atomic ratio of Mn:Se) ranging from 0 to 0.07. The distribution homogeneity of the Mn element incorporated into the lattice of (Li, Fe)OHFeSe is checked by combined measurements of high-angle- annular-dark-field (HAADF) imaging and electron energy-loss spectroscopy (EELS). Interestingly, we find that the superconducting transition temperature Tc and unit cell parameter c of the Mn-doped (Li, Fe)OHFeSe samples display similar V-shaped evolutions with the increasing dopant concentration z. We propose that, with increasing doping level, the Mn dopant first occupies the tetrahedral sites in the (Li, Fe)OH layers before starting to substitute the Fe element in the su- perconducting FeSe layers, which accounts for the V-shaped change in cell parameter c. The observed positive correlation between the Tc and lattice parameter c, regardless of the Mn doping level z, indicates that a larger interlayer separation, or a weaker interlayer coupling, is essential for the high-Tc superconductivity in (Li, Fe)OHFeSe. This agrees with our previous observations on powder, single crystal, and film samples of (Li, Fe)OHFeSe superconductors. 展开更多
关键词 FeSe-based superconductors Mn doping effect correlation between superconductivity and interlayer separation
在线阅读 下载PDF
High-Temperature Performance Analysis of AlGaN/GaN Polarization Doped Field Effect Transistors Based on the Quasi-Multi-Channel Model
10
作者 房玉龙 冯志红 +6 位作者 李成明 宋旭波 尹甲运 周幸叶 王元刚 吕元杰 蔡树军 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第3期117-120,共4页
We report on the temperature-dependent dc performance of A1GaN/GaN polarization doped field effect transistors (PolFETs). The rough decrements of drain current and transeonductance with the operation temperature are... We report on the temperature-dependent dc performance of A1GaN/GaN polarization doped field effect transistors (PolFETs). The rough decrements of drain current and transeonductance with the operation temperature are observed. Compared with the conventional HFETs, the drain current drop of the PolFET is smaller. The transeonductance drop of PolFETs at different gate biases shows different temperature dependences. From the aspect of the unique carrier behaviors of graded AlGaN/GaN heterostructure, we propose a quasi-multi-channel model to investigate the physics behind the temperature-dependent performance of AlGaN/GaN PolFETs. 展开更多
关键词 AlGaN High-Temperature Performance Analysis of AlGaN/GaN Polarization Doped Field effect Transistors Based on the Quasi-Multi-Channel Model
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部