Indium doped zinc oxide (ZnO:In) thin films were prepared by ultrasonic spray pyrolysis on corning eagle 2000 glass substrate. 1 and 2 at.% indium doped single-layer ZnO:In thin films with different amounts of ace...Indium doped zinc oxide (ZnO:In) thin films were prepared by ultrasonic spray pyrolysis on corning eagle 2000 glass substrate. 1 and 2 at.% indium doped single-layer ZnO:In thin films with different amounts of acetic acid added in the initial solution were fabricated. The 1 at.% indium doped single-layers have triangle grains. The 2 at.% indium doped single-layer with 0.18 acetic acid adding has the resistivity of 6.82 × 10^-3 Ω. cm and particle grains. The doublelayers structure is designed to fabricate the ZnO:In thin film with low resistivity (2.58 × 10^-3 Ω. cm) and good surface morphology. It is found that the surface morphology of the double-layer ZnO:In film strongly depends on the substratelayer, and the second-layer plays a large part in the resistivity of the doublewlayer ZnO:In thin film. Both total and direct transmittances of the double-layer ZnO:In film are above 80% in the visible light region. Single junction a-Si:H solar cell based on the double-layer ZnO:In as front electrode is also investigated.展开更多
Zinc oxide(ZnO) doped with erbium at different concentrations was synthesized by solid-state reaction method and characterized by X-ray diffraction(XRD), scanning electron microscopic(SEM), UVabsorption spectroscopy, ...Zinc oxide(ZnO) doped with erbium at different concentrations was synthesized by solid-state reaction method and characterized by X-ray diffraction(XRD), scanning electron microscopic(SEM), UVabsorption spectroscopy, photoluminescence(PL) study and vibrating sample magnetometer. The XRD studies exhibit the presence of wurtzite crystal structure similar to the parent compound ZnO in 1% Er^(3+)doped Zn O,suggesting that doped Er^(3+)ions sit at the regular Zn^(2+)sites. However, same studies spread over the samples with Er^(3+)content>1% reveals the occurrence of secondary phase. SEM images of 1% Er^(3+)doped ZnO show the polycrystalline nature of the synthesized sample. UV-visible absorption spectrum of Er^(3+)doped ZnO nanocrystals shows a strong absorption peak at 388 nm due to ZnO band to band transition. The PL study exhibits emission in the visible region, due to excitonic as well as defect related transitions. The magnetizationfield curve of Er^(3+)doped ZnO nanocrystals showed ferromagnetic property at room-temperature.展开更多
基金supported by Hi-Tech Research and Development Program of China (Grant Nos. 2007AA05Z436 and 2009AA050602)Science and Technology Support Project of Tianjin (Grant No. 08ZCKFGX03500)+3 种基金the National Basic Research Program of China (Grant Nos. 2011CB201605 and 2011CB201606)the National Natural Science Foundation of China (Grant No. 60976051)International Cooperation Project between China-Greece Government (Grant No. 2009DFA62580)Program for New Century Excellent Talents in University of China (Grant No. NCET-08-0295)
文摘Indium doped zinc oxide (ZnO:In) thin films were prepared by ultrasonic spray pyrolysis on corning eagle 2000 glass substrate. 1 and 2 at.% indium doped single-layer ZnO:In thin films with different amounts of acetic acid added in the initial solution were fabricated. The 1 at.% indium doped single-layers have triangle grains. The 2 at.% indium doped single-layer with 0.18 acetic acid adding has the resistivity of 6.82 × 10^-3 Ω. cm and particle grains. The doublelayers structure is designed to fabricate the ZnO:In thin film with low resistivity (2.58 × 10^-3 Ω. cm) and good surface morphology. It is found that the surface morphology of the double-layer ZnO:In film strongly depends on the substratelayer, and the second-layer plays a large part in the resistivity of the doublewlayer ZnO:In thin film. Both total and direct transmittances of the double-layer ZnO:In film are above 80% in the visible light region. Single junction a-Si:H solar cell based on the double-layer ZnO:In as front electrode is also investigated.
文摘Zinc oxide(ZnO) doped with erbium at different concentrations was synthesized by solid-state reaction method and characterized by X-ray diffraction(XRD), scanning electron microscopic(SEM), UVabsorption spectroscopy, photoluminescence(PL) study and vibrating sample magnetometer. The XRD studies exhibit the presence of wurtzite crystal structure similar to the parent compound ZnO in 1% Er^(3+)doped Zn O,suggesting that doped Er^(3+)ions sit at the regular Zn^(2+)sites. However, same studies spread over the samples with Er^(3+)content>1% reveals the occurrence of secondary phase. SEM images of 1% Er^(3+)doped ZnO show the polycrystalline nature of the synthesized sample. UV-visible absorption spectrum of Er^(3+)doped ZnO nanocrystals shows a strong absorption peak at 388 nm due to ZnO band to band transition. The PL study exhibits emission in the visible region, due to excitonic as well as defect related transitions. The magnetizationfield curve of Er^(3+)doped ZnO nanocrystals showed ferromagnetic property at room-temperature.