The optimal operation of water distribution networks under local pipe failures, such as water main breaks, was proposed. Based on a hydraulic analysis and a simulation of water distribution networks, a macroscopic mod...The optimal operation of water distribution networks under local pipe failures, such as water main breaks, was proposed. Based on a hydraulic analysis and a simulation of water distribution networks, a macroscopic model for a network under a local pipe failure was established by the statistical regression. After the operation objectives under a local pipe failure were determined, the optimal operation model was developed and solved by the genetic algorithm. The program was developed and examined by a city distribution network. The optimal operation alternative shows that the electricity cost is saved approximately 11%, the income of the water corporation is increased approximately 5%, and the pressure in the water distribution network is distributed evenly to ensure the network safe operation. Therefore, the proposed method for optimal operation under local pipe failure is feasible and cost-effective.展开更多
The fire distribution can be divided into weapon assignment and firing time scheduling. The criterion of weapon allocation is that a target with greater threat has higher priority. And the criterion of firing time sch...The fire distribution can be divided into weapon assignment and firing time scheduling. The criterion of weapon allocation is that a target with greater threat has higher priority. And the criterion of firing time scheduling is that a target can be damaged with the expected probability before a specific time. A fire distribution scheme and a program for the integrated missile-gun air defense system based on a criterion of earlier damage were presented. An example was taken to illustrate its effectiveness.展开更多
智能软开关(soft normally open point, SNOP)凭借其灵活的功率调节能力逐渐应用于配电网中。但由于大量分布式电源(distributed generation, DG)接入,SNOP受到线路容量的限制,调节能力有限。为发挥其最大调节能力,文中提出适用于配电...智能软开关(soft normally open point, SNOP)凭借其灵活的功率调节能力逐渐应用于配电网中。但由于大量分布式电源(distributed generation, DG)接入,SNOP受到线路容量的限制,调节能力有限。为发挥其最大调节能力,文中提出适用于配电系统的SNOP对线路有功功率裕度调节灵敏度的定义,将其作为SNOP调节能力的评价指标,由此建立SNOP的选址优化模型。在此基础上,引入系统节点电压裕度以及线路功率裕度2个安全评价指标,构建以综合运行裕度最大为目标函数的配电网运行优化模型。将上述模型转化为二阶锥模型,通过MATLAB工具实现该问题的有效求解。最后,通过改进的IEEE 33节点算例对所提模型与求解方法进行验证,进一步表明了所提选址方法能够发挥SNOP的最大调节作用,优化控制策略可以实现配电网安全经济运行。展开更多
基金Project(50278062) supported by the National Natural Science Foundation of ChinaProject(003611611)supported by the Natural Science Foundation of Tianjin, China
文摘The optimal operation of water distribution networks under local pipe failures, such as water main breaks, was proposed. Based on a hydraulic analysis and a simulation of water distribution networks, a macroscopic model for a network under a local pipe failure was established by the statistical regression. After the operation objectives under a local pipe failure were determined, the optimal operation model was developed and solved by the genetic algorithm. The program was developed and examined by a city distribution network. The optimal operation alternative shows that the electricity cost is saved approximately 11%, the income of the water corporation is increased approximately 5%, and the pressure in the water distribution network is distributed evenly to ensure the network safe operation. Therefore, the proposed method for optimal operation under local pipe failure is feasible and cost-effective.
基金Sponsored by Jiangsu Planned Project for Postdoctoral (0901014B)
文摘The fire distribution can be divided into weapon assignment and firing time scheduling. The criterion of weapon allocation is that a target with greater threat has higher priority. And the criterion of firing time scheduling is that a target can be damaged with the expected probability before a specific time. A fire distribution scheme and a program for the integrated missile-gun air defense system based on a criterion of earlier damage were presented. An example was taken to illustrate its effectiveness.
文摘智能软开关(soft normally open point, SNOP)凭借其灵活的功率调节能力逐渐应用于配电网中。但由于大量分布式电源(distributed generation, DG)接入,SNOP受到线路容量的限制,调节能力有限。为发挥其最大调节能力,文中提出适用于配电系统的SNOP对线路有功功率裕度调节灵敏度的定义,将其作为SNOP调节能力的评价指标,由此建立SNOP的选址优化模型。在此基础上,引入系统节点电压裕度以及线路功率裕度2个安全评价指标,构建以综合运行裕度最大为目标函数的配电网运行优化模型。将上述模型转化为二阶锥模型,通过MATLAB工具实现该问题的有效求解。最后,通过改进的IEEE 33节点算例对所提模型与求解方法进行验证,进一步表明了所提选址方法能够发挥SNOP的最大调节作用,优化控制策略可以实现配电网安全经济运行。