This work presents a fuzzy based methodology for distribution system feeder reconfiguration considering DSTATCOM with an objective of minimizing real power loss and operating cost. Installation costs of DSTATCOM devic...This work presents a fuzzy based methodology for distribution system feeder reconfiguration considering DSTATCOM with an objective of minimizing real power loss and operating cost. Installation costs of DSTATCOM devices and the cost of system operation, namely, energy loss cost due to both reconfiguration and DSTATCOM placement, are combined to form the objective function to be minimized. The distribution system tie switches, DSTATCOM location and size have been optimally determined to obtain an appropriate operational condition. In the proposed approach, the fuzzy membership function of loss sensitivity is used for the selection of weak nodes in the power system for the placement of DSTATCOM and the optimal parameter settings of the DFACTS device along with optimal selection of tie switches in reconfiguration process are governed by genetic algorithm(GA). Simulation results on IEEE 33-bus and IEEE 69-bus test systems concluded that the combinatorial method using DSTATCOM and reconfiguration is preferable to reduce power losses to 34.44% for 33-bus system and to 45.43% for 69-bus system.展开更多
A distributed blackboard decision-making framework for collaborative planning based on nested genetic algorithm (NGA) is proposed. By using blackboard-based communication paradigm and shared data structure, multiple...A distributed blackboard decision-making framework for collaborative planning based on nested genetic algorithm (NGA) is proposed. By using blackboard-based communication paradigm and shared data structure, multiple decision-makers (DMs) can collaboratively solve the tasks-platforms allocation scheduling problems dynamically through the coordinator. This methodo- logy combined with NGA maximizes tasks execution accuracy, also minimizes the weighted total workload of the DM which is measured in terms of intra-DM and inter-DM coordination. The intra-DM employs an optimization-based scheduling algorithm to match the tasks-platforms assignment request with its own platforms. The inter-DM coordinates the exchange of collaborative request information and platforms among DMs using the blackboard architecture. The numerical result shows that the proposed black- board DM framework based on NGA can obtain a near-optimal solution for the tasks-platforms collaborative planning problem. The assignment of platforms-tasks and the patterns of coordination can achieve a nice trade-off between intra-DM and inter-DM coordination workload.展开更多
Aimed at the uncertain characteristics of discrete logistics network design,an interval hierarchical triangular uncertain OD demand model based on interval demand and network flow is presented.Under consideration of t...Aimed at the uncertain characteristics of discrete logistics network design,an interval hierarchical triangular uncertain OD demand model based on interval demand and network flow is presented.Under consideration of the system profit,the uncertain demand of logistics network is measured by interval variables and interval parameters,and an interval planning model of discrete logistics network is established.The risk coefficient and maximum constrained deviation are defined to realize the certain transformation of the model.By integrating interval algorithm and genetic algorithm,an interval hierarchical optimal genetic algorithm is proposed to solve the model.It is shown by a tested example that in the same scenario condition an interval solution[3275.3,3 603.7]can be obtained by the model and algorithm which is obviously better than the single precise optimal solution by stochastic or fuzzy algorithm,so it can be reflected that the model and algorithm have more stronger operability and the solution result has superiority to scenario decision.展开更多
In order to form an algorithm for distribution network routing,an automatic routing method of distribution network planning was proposed based on the shortest path.The problem of automatic routing was divided into two...In order to form an algorithm for distribution network routing,an automatic routing method of distribution network planning was proposed based on the shortest path.The problem of automatic routing was divided into two steps in the method:the first step was that the shortest paths along streets between substation and load points were found by the basic ant colony algorithm to form a preliminary radial distribution network,and the second step was that the result of the shortest path was used to initialize pheromone concentration and pheromone updating rules to generate globally optimal distribution network.Cases studies show that the proposed method is effective and can meet the planning requirements.It is verified that the proposed method has better solution and utility than planning method based on the ant colony algorithm.展开更多
Enlightened by distribution of creatures in natural ecology environment, the distributionpopulation-based genetic algorithm (DPGA) is presented in this paper. The searching capability ofthe algorithm is improved by co...Enlightened by distribution of creatures in natural ecology environment, the distributionpopulation-based genetic algorithm (DPGA) is presented in this paper. The searching capability ofthe algorithm is improved by competition between distribution populations to reduce the search zone.This method is applied to design of optimal parameters of PID controllers with examples, and thesimulation results show that satisfactory performances are obtained.展开更多
This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously a...This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.展开更多
Rural power network planning is a complicated nonlinear optimized combination problem which based on load forecasting results, and its actual load is affected by many uncertain factors, which influenced optimization r...Rural power network planning is a complicated nonlinear optimized combination problem which based on load forecasting results, and its actual load is affected by many uncertain factors, which influenced optimization results of rural power network planning. To solve the problems, the interval algorithm was used to modify the initial search method of uncertainty load mathematics model in rural network planning. Meanwhile, the genetic/tabu search combination algorithm was adopted to optimize the initialized network. The sample analysis results showed that compared with the certainty planning, the improved method was suitable for urban medium-voltage distribution network planning with consideration of uncertainty load and the planning results conformed to the reality.展开更多
Target distribution in cooperative combat is a difficult and emphases. We build up the optimization model according to the rule of fire distribution. We have researched on the optimization model with BOA. The BOA can ...Target distribution in cooperative combat is a difficult and emphases. We build up the optimization model according to the rule of fire distribution. We have researched on the optimization model with BOA. The BOA can estimate the joint probability distribution of the variables with Bayesian network, and the new candidate solutions also can be generated by the joint distribution. The simulation example verified that the method could be used to solve the complex question, the operation was quickly and the solution was best.展开更多
The optimal transmission lines assignment with maximal reliabilities (OTLAMR) in the multi-source multi-sink multi-state computer network (MMMCN) was investigated. The OTLAMR problem contains two sub-problems: the MMM...The optimal transmission lines assignment with maximal reliabilities (OTLAMR) in the multi-source multi-sink multi-state computer network (MMMCN) was investigated. The OTLAMR problem contains two sub-problems: the MMMCN reliabilities evaluation and multi-objective transmission lines assignment optimization. First, a reliability evaluation with a transmission line assignment (RETLA) algorithm is proposed to calculate the MMMCN reliabilities under the cost constraint for a certain transmission lines configuration. Second, the non-dominated sorting genetic algorithm II (NSGA-II) is adopted to find the non-dominated set of the transmission lines assignments based on the reliabilities obtained from the RETLA algorithm. By combining the RETLA and the NSGA-II algorithms together, the RETLA-NSGA II algorithm is proposed to solve the OTLAMR problem. The experiments result show that the RETLA-NSGA II algorithm can provide efficient solutions in a reasonable time, from which the decision makers can choose the best solution based on their preferences and experiences.展开更多
In order to resolve the coordination and optimization of the power network planning effectively, on the basis of introducing the concept of power intelligence center (PIC), the key factor power flow, line investment a...In order to resolve the coordination and optimization of the power network planning effectively, on the basis of introducing the concept of power intelligence center (PIC), the key factor power flow, line investment and load that impact generation sector, transmission sector and dispatching center in PIC were analyzed and a multi-objective coordination optimal model for new power intelligence center (NPIC) was established. To ensure the reliability and coordination of power grid and reduce investment cost, two aspects were optimized. The evolutionary algorithm was introduced to solve optimal power flow problem and the fitness function was improved to ensure the minimum cost of power generation. The gray particle swarm optimization (GPSO) algorithm was used to forecast load accurately, which can ensure the network with high reliability. On this basis, the multi-objective coordination optimal model which was more practical and in line with the need of the electricity market was proposed, then the coordination model was effectively solved through the improved particle swarm optimization algorithm, and the corresponding algorithm was obtained. The optimization of IEEE30 node system shows that the evolutionary algorithm can effectively solve the problem of optimal power flow. The average load forecasting of GPSO is 26.97 MW, which has an error of 0.34 MW compared with the actual load. The algorithm has higher forecasting accuracy. The multi-objective coordination optimal model for NPIC can effectively process the coordination and optimization problem of power network.展开更多
A dist ributed optimal local double loop (DOLDL) network is presented. Emphasis is laid on the topology and distributed routing algorithms for the DOLDL. On the basis of building an abstract model, a set of definition...A dist ributed optimal local double loop (DOLDL) network is presented. Emphasis is laid on the topology and distributed routing algorithms for the DOLDL. On the basis of building an abstract model, a set of definitions and theorems are described and proved. An algorithm which can optimize the double loop networks is presented. The optimal values of the topologic parameters for the DOLDL have been obtained by the algorithm, and these numerical results are analyzed. The study shows that the bounds of the optimal diameter d and average hop distance a for this class of networks are [3N- 2]≤d≤[3N ] and (5N/9 (N-1))-(3N -1.8)<a<(5N/9(N-1)) (3N -0.9),respectively (N is the number of nodes in the network ). A class of the distributed routing algorithms for the DOLDL and the implementation procedure of an adaptive fault-tolerant algorithm are proposed and analyzed. The correctness of the algorithm has also been verified by simulating.展开更多
Project construction and development are an impor-tant part of future army designs.In today’s world,intelligent war-fare and joint operations have become the dominant develop-ments in warfare,so the construction and ...Project construction and development are an impor-tant part of future army designs.In today’s world,intelligent war-fare and joint operations have become the dominant develop-ments in warfare,so the construction and development of the army need top-down,top-level design,and comprehensive plan-ning.The traditional project development model is no longer suf-ficient to meet the army’s complex capability requirements.Projects in various fields need to be developed and coordinated to form a joint force and improve the army’s combat effective-ness.At the same time,when a program consists of large-scale project data,the effectiveness of the traditional,precise mathe-matical planning method is greatly reduced because it is time-consuming,costly,and impractical.To solve above problems,this paper proposes a multi-stage program optimization model based on a heterogeneous network and hybrid genetic algo-rithm and verifies the effectiveness and feasibility of the model and algorithm through an example.The results show that the hybrid algorithm proposed in this paper is better than the exist-ing meta-heuristic algorithm.展开更多
基金supported by Borujerd Branch,Islamic Azad University Iran
文摘This work presents a fuzzy based methodology for distribution system feeder reconfiguration considering DSTATCOM with an objective of minimizing real power loss and operating cost. Installation costs of DSTATCOM devices and the cost of system operation, namely, energy loss cost due to both reconfiguration and DSTATCOM placement, are combined to form the objective function to be minimized. The distribution system tie switches, DSTATCOM location and size have been optimally determined to obtain an appropriate operational condition. In the proposed approach, the fuzzy membership function of loss sensitivity is used for the selection of weak nodes in the power system for the placement of DSTATCOM and the optimal parameter settings of the DFACTS device along with optimal selection of tie switches in reconfiguration process are governed by genetic algorithm(GA). Simulation results on IEEE 33-bus and IEEE 69-bus test systems concluded that the combinatorial method using DSTATCOM and reconfiguration is preferable to reduce power losses to 34.44% for 33-bus system and to 45.43% for 69-bus system.
基金supported by the National Aerospace Science Foundation of China(20138053038)the Graduate Starting Seed Fund of Northwestern Polytechnical University(Z2015111)
文摘A distributed blackboard decision-making framework for collaborative planning based on nested genetic algorithm (NGA) is proposed. By using blackboard-based communication paradigm and shared data structure, multiple decision-makers (DMs) can collaboratively solve the tasks-platforms allocation scheduling problems dynamically through the coordinator. This methodo- logy combined with NGA maximizes tasks execution accuracy, also minimizes the weighted total workload of the DM which is measured in terms of intra-DM and inter-DM coordination. The intra-DM employs an optimization-based scheduling algorithm to match the tasks-platforms assignment request with its own platforms. The inter-DM coordinates the exchange of collaborative request information and platforms among DMs using the blackboard architecture. The numerical result shows that the proposed black- board DM framework based on NGA can obtain a near-optimal solution for the tasks-platforms collaborative planning problem. The assignment of platforms-tasks and the patterns of coordination can achieve a nice trade-off between intra-DM and inter-DM coordination workload.
基金Project(51178061)supported by the National Natural Science Foundation of ChinaProject(2010FJ6016)supported by Hunan Provincial Science and Technology,China+1 种基金Project(12C0015)supported by Scientific Research Fund of Hunan Provincial Education Department,ChinaProject(13JJ3072)supported by Hunan Provincial Natural Science Foundation of China
文摘Aimed at the uncertain characteristics of discrete logistics network design,an interval hierarchical triangular uncertain OD demand model based on interval demand and network flow is presented.Under consideration of the system profit,the uncertain demand of logistics network is measured by interval variables and interval parameters,and an interval planning model of discrete logistics network is established.The risk coefficient and maximum constrained deviation are defined to realize the certain transformation of the model.By integrating interval algorithm and genetic algorithm,an interval hierarchical optimal genetic algorithm is proposed to solve the model.It is shown by a tested example that in the same scenario condition an interval solution[3275.3,3 603.7]can be obtained by the model and algorithm which is obviously better than the single precise optimal solution by stochastic or fuzzy algorithm,so it can be reflected that the model and algorithm have more stronger operability and the solution result has superiority to scenario decision.
基金Project(2009CB219703) supported by the National Basic Research Program of ChinaProject(2011AA05A117) supported by the National High Technology Research and Development Program of China
文摘In order to form an algorithm for distribution network routing,an automatic routing method of distribution network planning was proposed based on the shortest path.The problem of automatic routing was divided into two steps in the method:the first step was that the shortest paths along streets between substation and load points were found by the basic ant colony algorithm to form a preliminary radial distribution network,and the second step was that the result of the shortest path was used to initialize pheromone concentration and pheromone updating rules to generate globally optimal distribution network.Cases studies show that the proposed method is effective and can meet the planning requirements.It is verified that the proposed method has better solution and utility than planning method based on the ant colony algorithm.
文摘Enlightened by distribution of creatures in natural ecology environment, the distributionpopulation-based genetic algorithm (DPGA) is presented in this paper. The searching capability ofthe algorithm is improved by competition between distribution populations to reduce the search zone.This method is applied to design of optimal parameters of PID controllers with examples, and thesimulation results show that satisfactory performances are obtained.
文摘This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.
文摘Rural power network planning is a complicated nonlinear optimized combination problem which based on load forecasting results, and its actual load is affected by many uncertain factors, which influenced optimization results of rural power network planning. To solve the problems, the interval algorithm was used to modify the initial search method of uncertainty load mathematics model in rural network planning. Meanwhile, the genetic/tabu search combination algorithm was adopted to optimize the initialized network. The sample analysis results showed that compared with the certainty planning, the improved method was suitable for urban medium-voltage distribution network planning with consideration of uncertainty load and the planning results conformed to the reality.
基金This project was supported by the Fund of College Doctor Degree (20020699009)
文摘Target distribution in cooperative combat is a difficult and emphases. We build up the optimization model according to the rule of fire distribution. We have researched on the optimization model with BOA. The BOA can estimate the joint probability distribution of the variables with Bayesian network, and the new candidate solutions also can be generated by the joint distribution. The simulation example verified that the method could be used to solve the complex question, the operation was quickly and the solution was best.
基金Projects(61004074,61134001,21076179)supported by the National Natural Science Foundation of ChinaProject(2009BAG12A08)supported by the National Key Technology Support Program of China+1 种基金Project(2010QNA5001)supported by the Fundamental Research Funds for the Central Universities of ChinaProjects(2012AA06A404,2006AA04Z184)supported by the National High Technology Research and Development Program of China
文摘The optimal transmission lines assignment with maximal reliabilities (OTLAMR) in the multi-source multi-sink multi-state computer network (MMMCN) was investigated. The OTLAMR problem contains two sub-problems: the MMMCN reliabilities evaluation and multi-objective transmission lines assignment optimization. First, a reliability evaluation with a transmission line assignment (RETLA) algorithm is proposed to calculate the MMMCN reliabilities under the cost constraint for a certain transmission lines configuration. Second, the non-dominated sorting genetic algorithm II (NSGA-II) is adopted to find the non-dominated set of the transmission lines assignments based on the reliabilities obtained from the RETLA algorithm. By combining the RETLA and the NSGA-II algorithms together, the RETLA-NSGA II algorithm is proposed to solve the OTLAMR problem. The experiments result show that the RETLA-NSGA II algorithm can provide efficient solutions in a reasonable time, from which the decision makers can choose the best solution based on their preferences and experiences.
基金Project (70671039) supported by the National Natural Science Foundation of China
文摘In order to resolve the coordination and optimization of the power network planning effectively, on the basis of introducing the concept of power intelligence center (PIC), the key factor power flow, line investment and load that impact generation sector, transmission sector and dispatching center in PIC were analyzed and a multi-objective coordination optimal model for new power intelligence center (NPIC) was established. To ensure the reliability and coordination of power grid and reduce investment cost, two aspects were optimized. The evolutionary algorithm was introduced to solve optimal power flow problem and the fitness function was improved to ensure the minimum cost of power generation. The gray particle swarm optimization (GPSO) algorithm was used to forecast load accurately, which can ensure the network with high reliability. On this basis, the multi-objective coordination optimal model which was more practical and in line with the need of the electricity market was proposed, then the coordination model was effectively solved through the improved particle swarm optimization algorithm, and the corresponding algorithm was obtained. The optimization of IEEE30 node system shows that the evolutionary algorithm can effectively solve the problem of optimal power flow. The average load forecasting of GPSO is 26.97 MW, which has an error of 0.34 MW compared with the actual load. The algorithm has higher forecasting accuracy. The multi-objective coordination optimal model for NPIC can effectively process the coordination and optimization problem of power network.
文摘A dist ributed optimal local double loop (DOLDL) network is presented. Emphasis is laid on the topology and distributed routing algorithms for the DOLDL. On the basis of building an abstract model, a set of definitions and theorems are described and proved. An algorithm which can optimize the double loop networks is presented. The optimal values of the topologic parameters for the DOLDL have been obtained by the algorithm, and these numerical results are analyzed. The study shows that the bounds of the optimal diameter d and average hop distance a for this class of networks are [3N- 2]≤d≤[3N ] and (5N/9 (N-1))-(3N -1.8)<a<(5N/9(N-1)) (3N -0.9),respectively (N is the number of nodes in the network ). A class of the distributed routing algorithms for the DOLDL and the implementation procedure of an adaptive fault-tolerant algorithm are proposed and analyzed. The correctness of the algorithm has also been verified by simulating.
基金supported by the National Natural Science Foundation of China(724701189072431011).
文摘Project construction and development are an impor-tant part of future army designs.In today’s world,intelligent war-fare and joint operations have become the dominant develop-ments in warfare,so the construction and development of the army need top-down,top-level design,and comprehensive plan-ning.The traditional project development model is no longer suf-ficient to meet the army’s complex capability requirements.Projects in various fields need to be developed and coordinated to form a joint force and improve the army’s combat effective-ness.At the same time,when a program consists of large-scale project data,the effectiveness of the traditional,precise mathe-matical planning method is greatly reduced because it is time-consuming,costly,and impractical.To solve above problems,this paper proposes a multi-stage program optimization model based on a heterogeneous network and hybrid genetic algo-rithm and verifies the effectiveness and feasibility of the model and algorithm through an example.The results show that the hybrid algorithm proposed in this paper is better than the exist-ing meta-heuristic algorithm.