Gas quenching and vacuum quenching process are widely applied to accelerate solvent volatilization to induce nucleation of perovskites in blade-coating method.In this work,we found these two pre-crystallization proces...Gas quenching and vacuum quenching process are widely applied to accelerate solvent volatilization to induce nucleation of perovskites in blade-coating method.In this work,we found these two pre-crystallization processes lead to different order of crystallization dynamics within the perovskite thin film,resulting in the differences of additive distribution.We then tailor-designed an additive molecule named 1,3-bis(4-methoxyphenyl)thiourea to obtain films with fewer defects and holes at the buried interface,and prepared perovskite solar cells with a certified efficiency of 23.75%.Furthermore,this work also demonstrates an efficiency of 20.18%for the large-area perovskite solar module(PSM)with an aperture area of 60.84 cm^(2).The PSM possesses remarkable continuous operation stability for maximum power point tracking of T_(90)>1000 h in ambient air.展开更多
Atmospheric particle adsorption on insulator surfaces,coupled with humid environments,significantly affects contamination flashover,necessitating a clear understanding of the electric field distribution on insulator s...Atmospheric particle adsorption on insulator surfaces,coupled with humid environments,significantly affects contamination flashover,necessitating a clear understanding of the electric field distribution on insulator surfaces with adsorbed particles.This is crucial for accurately assessing insulator safety and informing critical decision-making.Although previous research has demonstrated that particle arrangement significantly influences the electric field distribution around transmission lines,an in-depth analysis of its effects on insulator surfaces remains lacking.To address this gap,this study establishes a composite insulator model to examine how three types of spherical contamination layers affect the electric field distribution on insulator surfaces under varying environmental conditions.The results reveal that in dry environments,the electric field strength at the apex of single-particle contamination layers increases with the particle size and relative permittivity.For the double-particle contamination layers,the electric field intensity on the insulator surface decreases as the particle spacing increases,and larger particles are more likely to attract smaller charged particles.For triple-particle contamination layers arranged in a triangular pattern,the maximum surface field strength is nearly double that of the chain-arranged particles.Furthermore,within the chain-arranged triple-particle contamination layers,a large-small-large size arrangement has a more pronounced impact on the surface electric field than a small-large-small size arrangement.In humid environments,the surface electric field strength of insulators decreases with increasing contamination levels.These findings are of significant theoretical and practical importance for ensuring the safe operation of power systems.展开更多
Growth of high-quality Nb_(3)Sn thin films for superconducting radiofrequency(SRF)applications using the vapor diffusion method requires a uniform distribution of tin nuclei on the niobium(Nb)surface.This study examin...Growth of high-quality Nb_(3)Sn thin films for superconducting radiofrequency(SRF)applications using the vapor diffusion method requires a uniform distribution of tin nuclei on the niobium(Nb)surface.This study examines the mechanism underlying the observed non-uniform distribution of tin nuclei with tin chloride SnCl_(2).Electron backscatter diffraction(EBSD)analysis was used to examine the correlation between the nucleation behavior and orientation of niobium grains in the substrate.The findings of the density functional theory(DFT)simulation are in good agreement with the experimental results,showing that the non-uniform distribution of tin nuclei is the result of the adsorption energy of SnCl_(2)molecules by varied niobium grain orientations.Further analysis indicated that the surface roughness and grain size of niobium also played significant roles in the nucleation behavior.This study provides valuable insights into enhancing the surface pretreatment of niobium substrates during the growth of Nb_(3)Sn thin films using the vapor diffusion method.展开更多
Continuous-variable quantum secure direct communication(CVQSDC)with Gaussian modulation(GM)demands a considerable quantity of random numbers during the preparation process and encodes them separately on the quadrature...Continuous-variable quantum secure direct communication(CVQSDC)with Gaussian modulation(GM)demands a considerable quantity of random numbers during the preparation process and encodes them separately on the quadrature components of the quantum states.Hence,high-speed random number generators are required to satisfy this demand,which is difficult to implement in practical applications.CVQSDC with discrete modulation(DM),correspondingly,employs a finite number of quantum states to achieve encoding,which can circumvent the shortcomings of the GM scheme.Based on the advantages of DM,the issue of attaining the most optimal secrecy capacity and communication distance remains to be resolved.Here,we propose a CVQSDC protocol based on N-symbol amplitude phase shift keying(N-APSK),which exploits the Boltzmann-Maxwell distribution assisted probability shaping technique.In comparison with the uniform distribution,according to 32-APSK CVQSDC,the proposed scheme extends the communication distance by about 38%,while obtaining a higher secrecy capacity at the same communication distance.Furthermore,increasing the value of N will concurrently increase the quantity of rings in the constellation,thereby facilitating enhancements of communication distance.This work incorporates the modulation approaches prevalently employed in classical communication into the realm of quantum communication,attaining gratifying advancements in communication distance and secrecy capacity,and concurrently facilitating the integrated development of quantum communication and classical communication.展开更多
A new measurement method for the spatial distribution of neutron beam flux in boron neutron capture therapy(BNCT)is being developed based on the two-dimensional Micromegas detector.To address the issue of long process...A new measurement method for the spatial distribution of neutron beam flux in boron neutron capture therapy(BNCT)is being developed based on the two-dimensional Micromegas detector.To address the issue of long processing times in traditional offline position reconstruction methods,this paper proposes a field programmable gate array based online position reconstruction method utilizing the micro-time projection chamber principle.This method encapsulates key technical aspects:a self-adaptive serial link technique built upon the dynamical adjustment of the delay chain length,fast sorting,a coordinate-matching technique based on the mapping between signal timestamps and random access memory(RAM)addresses,and a precise start point-merging technique utilizing a circular combined RAM.The performance test of the selfadaptive serial link shows that the bit error rate of the link is better than 10-12 at a confidence level of 99%,ensuring reliable data transmission.The experiment utilizing the readout electronics and Micromegas detector shows a spatial resolution of approximately 1.4 mm,surpassing the current method’s resolution level of 5 mm.The beam experiment confirms that the readout electronics system can obtain the flux spatial distribution of neutron beams online,thus validating the feasibility of the position reconstruction method.The online position reconstruction method avoids traditional methods,such as bubble sorting and traversal searching,simplifies the design of the logic firmware,and reduces the time complexity from O(n2)to O(n).This study contributes to the advancement in measuring neutron beam flux for BNCT.展开更多
The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribut...The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribution of Martian rocks mechanical property for the success of Mars exploration.In this paper,a fast and accurate probability distribution method for predicting the macroscale elastic modulus of Martian rocks was proposed by integrating the microscale rock mechanical experiments(micro-RME),accurate grain-based modeling(AGBM)and upscaling methods based on reliability principles.Firstly,the microstructure of NWA12564 Martian sample and elastic modulus of each mineral were obtained by micro-RME with TESCAN integrated mineral analyzer(TIMA)and nanoindentation.The best probability distribution function of the minerals was determined by Kolmogorov-Smirnov(K-S)test.Secondly,based on best distribution function of each mineral,the Monte Carlo simulations(MCS)and upscaling methods were implemented to obtain the probability distribution of upscaled elastic modulus.Thirdly,the correlation between the upscaled elastic modulus and macroscale elastic modulus obtained by AGBM was established.The accurate probability distribution of the macroscale elastic modulus was obtained by this correlation relationship.The proposed method can predict the probability distribution of Martian rocks mechanical property with any size and shape samples.展开更多
Neutron-skin thickness is a key parameter for a neutron-rich nucleus;however,it is difficult to determine.In the framework of the Lanzhou Quantum Molecular Dynamics(LQMD)model,a possible probe for the neutron-skin thi...Neutron-skin thickness is a key parameter for a neutron-rich nucleus;however,it is difficult to determine.In the framework of the Lanzhou Quantum Molecular Dynamics(LQMD)model,a possible probe for the neutron-skin thickness(δ_(np))of neutron-rich ^(48)Ca was studied in the 140A MeV ^(48)Ca+^(9)Be projectile fragmentation reaction based on the parallel momentum distribution(p∥)of the residual fragments.A Fermi-type density distribution was employed to initiate the neutron density distributions in the LQMD simulations.A combined Gaussian function with different width parameters for the left side(Γ_(L))and the right side(Γ_(R))in the distribution was used to describe the p∥of the residual fragments.Taking neutron-rich sulfur isotopes as examples,Γ_(L) shows a sensitive correlation withδ_(np) of ^(48)Ca,and is proposed as a probe for determining the neutron skin thickness of the projectile nucleus.展开更多
The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices...The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices that can flexibly control active and reactive power flows.With the exception of active power output,photovoltaic(PV)devices can provide reactive power compensation through an inverter.Thus,a synergetic optimization operation method for SOP and PV in a distribution network is proposed.A synergetic optimization model was developed.The voltage deviation,network loss,and ratio of photovoltaic abandonment were selected as the objective functions.The PV model was improved by considering the three reactive power output modes of the PV inverter.Both the load fluctuation and loss of the SOP were considered.Three multi-objective optimization algorithms were used,and a compromise optimal solution was calculated.Case studies were conducted using an IEEE 33-node system.The simulation results indicated that the SOP and PVs complemented each other in terms of active power transmission and reactive power compensation.Synergetic optimization improves power control capability and flexibility,providing better power quality and PV consumption rate.展开更多
P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phas...P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phases remains a necessity.Herein,we design a P2/O3-type Na_(0.76)Ni_(0.31)Zn_(0.07)Mn_(0.50)Ti_(0.12)0_(2)(NNZMT)with high chemical/electrochemical stability by enhancing the coupling between the two phases.For the first time,a unique Na*extraction is observed from a Na-rich O3 phase by a Na-poor P2 phase and systematically investigated.This process is facilitated by Zn^(2+)/Ti^(4+)dual doping and calcination condition regulation,allowing a higher Na*content in the P2 phase with larger Na^(+)transport channels and enhancing Na transport kinetics.Because of reduced Na^(+)in the O3 phase,which increases the difficulty of H^(+)/Na^(+) exchange,the hydrostability of the O3 phase in NNZMT is considerably improved.Furthermore,Zn^(2+)/Ti^(4+)presence in NNZMT synergistically regulates oxygen redox chemistry,which effectively suppresses O_(2)/CO_(2) gas release and electrolyte decomposition,and completely inhibits phase transitions above 4.0 V.As a result,NNZMT achieves a high discharge capacity of 144.8 mA h g^(-1) with a median voltage of 3.42 V at 20 mA g^(-1) and exhibits excellent cycling performance with a capacity retention of 77.3% for 1000 cycles at 2000 mA g^(-1).This study provides an effective strategy and new insights into the design of high-performance layered-oxide cathode materials with enhanced structure/interface stability forSIBs.展开更多
Based on the situation and progress of marine oil/gas exploration in the Sichuan Basin,SW China,the whole petroleum system is divided for marine carbonate rocks of the basin according to the combinations of hydrocarbo...Based on the situation and progress of marine oil/gas exploration in the Sichuan Basin,SW China,the whole petroleum system is divided for marine carbonate rocks of the basin according to the combinations of hydrocarbon accumulation elements,especially the source rock.The hydrocarbon accumulation characteristics of each whole petroleum system are analyzed,the patterns of integrated conventional and unconventional hydrocarbon accumulation are summarized,and the favorable exploration targets are proposed.Under the control of multiple extensional-convergent tectonic cycles,the marine carbonate rocks of the Sichuan Basin contain three sets of regional source rocks and three sets of regional cap rocks,and can be divided into the Cambrian,Silurian and Permian whole petroleum systems.These whole petroleum systems present mainly independent hydrocarbon accumulation,containing natural gas of affinity individually.Locally,large fault zones run through multiple whole petroleum systems,forming a fault-controlled complex whole petroleum system.The hydrocarbon accumulation sequence of continental shelf facies shale gas accumulation,marginal platform facies-controlled gas reservoirs,and intra-platform fault-and facies-controlled gas reservoirs is common in the whole petroleum system,with a stereoscopic accumulation and orderly distribution pattern.High-quality source rock is fundamental to the formation of large gas fields,and natural gas in a whole petroleum system is generally enriched near and within the source rocks.The development and maintenance of large-scale reservoirs are essential for natural gas enrichment,multiple sources,oil and gas transformation,and dynamic adjustment are the characteristics of marine petroleum accumulation,and good preservation conditions are critical to natural gas accumulation.Large-scale marginal-platform reef-bank facies zones,deep shale gas,and large-scale lithological complexes related to source-connected faults are future marine hydrocarbon exploration targets in the Sichuan Basin.展开更多
The reference-frame-independent(RFI)quantum key distribution(QKD)is suitable for satellite-based links by removing the active alignment on the reference frames.However,how the beam wandering influences the performance...The reference-frame-independent(RFI)quantum key distribution(QKD)is suitable for satellite-based links by removing the active alignment on the reference frames.However,how the beam wandering influences the performance of RFI-QKD remains a pending issue in satellite-to-ground links.In this paper,based on the mathematical model for characterizing beam wandering,we present the security analysis for satellite-to-ground RFI-QKD and analytically derive formulas for calculating the secret key rate with beam wandering.Our simulation results show that the performance of RFI-QKD is better than the Bennett–Brassard 1984(BB84)QKD with beam wandering in asymptotic case.Furthermore,the degree of influences of beam wandering is specifically presented for satellite-to-ground RFI-QKD when statistical fluctuations are taken into account.Our work can provide theoretical support for the realization of RFI-QKD using satellite-to-ground links and have implications for the construction of large-scale satellite-based quantum networks.展开更多
The reverse J-shaped diameter distribution is considered an inherent attribute of natural forests,cru-cial for forest resource utilization and community stability.However,in karst regions,intense habitat heterogeneity...The reverse J-shaped diameter distribution is considered an inherent attribute of natural forests,cru-cial for forest resource utilization and community stability.However,in karst regions,intense habitat heterogeneity might alter species composition,spatial distribution,growth,biomass allocation,and mortality processes,yet its impact on diameter structure remains unclear.A fixed plot of 200 m×110 m was established in the Nanpan River Basin,Southwest China,within an old-growth oak forest(>300 years old),and the influence of site substrates(i.e.,rock and soil),topographic factors,sample area,and orientation on diameter distribution was analyzed.Trees on both rock and soil exhibited a reverse-J shape,quantifiable Project funding:This work was supported by the National Natural Science Foundation of China(32060340 and 31400542),the Scientific Research Capacity Building Project for Laibin Jinxiu Dayaoshan Forest Ecosystem Observation and Research Station of Guangxi(22-035-130-01).through the Weibull function.The substrates had a similar density,approximately 2100 plants/ha.However,the average and range of diameter of trees on rock were smaller than those on soil,suggesting that rock constrains tree growth.The diameter distribution of trees across microtopography also displayed a reverse-J shape.Yet,higher elevations and sunny slopes showed a greater curvature of diameter classes compared to lower elevations and shady slopes,indicating habitat preferences in karst trees.Sample area and orientation had minimal effects on diameter class curve that reached stability when the plot size was 6000 m2.These results suggest that the reverse J-shaped diameter distribution prevails at small scales in karst old-growth forests,encompassing multiple curvatures and spanning forest ecosystems.展开更多
In the realm of public goods game,punishment,as a potent tool,stands out for fostering cooperation.While it effectively addresses the first-order free-rider problem,the associated costs can be substantial.Punishers in...In the realm of public goods game,punishment,as a potent tool,stands out for fostering cooperation.While it effectively addresses the first-order free-rider problem,the associated costs can be substantial.Punishers incur expenses in imposing sanctions,while defectors face fines.Unfortunately,these monetary elements seemingly vanish into thin air,representing a loss to the system itself.However,by virtue of the redistribution of fines to cooperators and punishers,not only can we mitigate this loss,but the rewards for these cooperative individuals can be enhanced.Based upon this premise,this paper introduces a fine distribution mechanism to the traditional pool punishment model.Under identical parameter settings,by conducting a comparative experiment with the conventional punishment model,the paper aims to investigate the impact of fine distribution on the evolution of cooperation in spatial public goods game.The experimental results clearly demonstrate that,in instances where the punishment cost is prohibitively high,the cooperative strategies of the traditional pool punishment model may completely collapse.However,the model enriched with fine distribution manages to sustain a considerable number of cooperative strategies,thus highlighting its effectiveness in promoting and preserving cooperation,even in the face of substantial punishment cost.展开更多
The data post-processing scheme based on two-way classical communication(TWCC)can improve the tolerable bit error rate and extend the maximal transmission distance when used in a quantum key distribution(QKD)system.In...The data post-processing scheme based on two-way classical communication(TWCC)can improve the tolerable bit error rate and extend the maximal transmission distance when used in a quantum key distribution(QKD)system.In this study,we apply the TWCC method to improve the performance of reference-frame-independent quantum key distribution(RFI-QKD),and analyze the influence of the TWCC method on the performance of decoy-state RFI-QKD in both asymptotic and non-asymptotic cases.Our numerical simulation results show that the TWCC method is able to extend the maximal transmission distance from 175 km to 198 km and improve the tolerable bit error rate from 10.48%to 16.75%.At the same time,the performance of RFI-QKD in terms of the secret key rate and maximum transmission distance are still greatly improved when statistical fluctuations are considered.We conclude that RFI-QKD with the TWCC method is of practical interest.展开更多
Selenium is one of the essential trace elements in human body,however,due to the limitation of geographic factors,the intake of selenium is seriously insufficient in most regions.In this study,selenium-enriched peanut...Selenium is one of the essential trace elements in human body,however,due to the limitation of geographic factors,the intake of selenium is seriously insufficient in most regions.In this study,selenium-enriched peanut sprouts with high selenium content were prepared by soaking peanut seeds in sodium selenite.The content and distribution of selenium in germinated peanuts were investigated.The results showed that 200μmol/L sodium selenite and germination for 6 days resulted in the highest total selenium,organic selenium content,and organic selenium conversion in peanut sprouts.Selenium exists in peanut sprouts mainly in organic selenium form,of which selenoproteins are the most critical organic selenium carriers.ABTS free radical scavenging capacity and reducing power assays showed that alkali-soluble protein had the highest antioxidant activity among the four soluble proteins,attributed to its high selenium binding level.Radicle and cotyledons of peanut seedlings were significantly enriched with selenium compared to hypocotyl.Amino acid analysis and SDS-PAGE results showed that selenium increases significantly after peanut germination and selenium enrichment.This study provides a simple,environmentally friendly,and effective way of selenium enrichment and offers a theoretical basis for applying selenium-enriched foods in food and medicine.展开更多
A non-Maxwellian collision kernel is employed to study the evolution of wealth distribution in a multi-agent society.The collision kernel divides agents into two different groups under certain conditions. Applying the...A non-Maxwellian collision kernel is employed to study the evolution of wealth distribution in a multi-agent society.The collision kernel divides agents into two different groups under certain conditions. Applying the kinetic theory of rarefied gases, we construct a two-group kinetic model for the evolution of wealth distribution. Under the continuous trading limit, the Fokker–Planck equation is derived and its steady-state solution is obtained. For the non-Maxwellian collision kernel, we find a suitable redistribution operator to match the taxation. Our results illustrate that taxation and redistribution have the property to change the Pareto index.展开更多
Purpose:To analyze the diversity of citation distributions to publications in different research topics to investigate the accuracy of size-independent,rank-based indicators.The top percentile-based indicators are the...Purpose:To analyze the diversity of citation distributions to publications in different research topics to investigate the accuracy of size-independent,rank-based indicators.The top percentile-based indicators are the most common indicators of this type,and the evaluations of Japan are the most evident misjudgments.Design/methodology/approach:The distributions of citations to publications from countries and journals in several research topics were analyzed along with the corresponding global publications using histograms with logarithmic binning,double rank plots,and normal probability plots of log-transformed numbers of citations.Findings:Size-independent,top percentile-based indicators are accurate when the global ranks of local publications fit a power law,but deviations in the least cited papers are frequent in countries and occur in all journals with high impact factors.In these cases,a single indicator is misleading.Comparisons of the proportions of uncited papers are the best way to predict these deviations.Research limitations:This study is fundamentally analytical,and its results describe mathematical facts that are self-evident.Practical implications:Respectable institutions,such as the OECD,the European Commission,and the U.S.National Science Board,produce research country rankings and individual evaluations using size-independent percentile indicators that are misleading in many countries.These misleading evaluations should be discontinued because they can cause confusion among research policymakers and lead to incorrect research policies.Originality/value:Studies linking the lower tail of citation distribution,including uncited papers,to percentile research indicators have not been performed previously.The present results demonstrate that studies of this type are necessary to find reliable procedures for research assessments.展开更多
Encoding system plays a significant role in quantum key distribution(QKD).However,the security and performance of QKD systems can be compromised by encoding misalignment due to the inevitable defects in realistic devi...Encoding system plays a significant role in quantum key distribution(QKD).However,the security and performance of QKD systems can be compromised by encoding misalignment due to the inevitable defects in realistic devices.To alleviate the influence of misalignments,a method exploiting statistics from mismatched basis is proposed to enable uncharacterized sources to generate secure keys in QKD.In this work,we propose a scheme on four-intensity decoy-state quantum key distribution with uncharacterized heralded single-photon sources.It only requires the source states are prepared in a two-dimensional Hilbert space,and can thus reduce the complexity of practical realizations.Moreover,we carry out corresponding numerical simulations and demonstrate that our present four-intensity decoy-state scheme can achieve a much higher key rate compared than a three-intensity decoy-state method,and meantime it can obtain a longer transmission distance compared than the one using weak coherent sources.展开更多
Aqueous zinc metal batteries (AZMBs) are hindered by uncontrolled dendrites and side reactions during commercialization,despite their advantages of safety and high capacity density.Herein,we propose the electrical fee...Aqueous zinc metal batteries (AZMBs) are hindered by uncontrolled dendrites and side reactions during commercialization,despite their advantages of safety and high capacity density.Herein,we propose the electrical feedback strategy to restrain the Zn dendrites resulting from the"tip effect"and optimize interfacial Zn^(2+)distribution to accelerate electrodeposition kinetics by using the lithium niobate (LNO) layer.Specifically,at the bumps of the zinc anode,the ferroelectric LNO is polarized by the locally strong electric field,which in turn counteracts the"tip effect".In this way,the dynamic polarization of LNO can repair the uneven tip electric field to achieve uniform and flat zinc deposition.In addition,owing to the interaction between Nb and Zn^(2+),a higher concentration of Zn^(2+)near the zincophilic LNO@Zn surface is obtained for the rapid electrochemical reaction kinetics of plating.Considering the aforementioned advantages,the LNO@Zn anode harvests stable cycling over 1200 h at 10 mA cm^(-2)with a superior cumulative capacity of 5800 mAh cm^(-2).Assembled with the a-MnO_(2) cathode,the full cell using LNO@Zn anode exhibits the slower capacity decay (0.054%per cycle) during 1000 cycles.This strategy provides a perspective for stabilizing zinc metal anodes through dynamic electrical response and interfacial ion redistribution effect.展开更多
基金supported by National Natural Science Foundation of China(62104082)Guangdong Basic and Applied Basic Research Foundation(2022A1515010746,2022A1515011228,and 2022B1515120006)the Science and Technology Program of Guangzhou(202201010458).
文摘Gas quenching and vacuum quenching process are widely applied to accelerate solvent volatilization to induce nucleation of perovskites in blade-coating method.In this work,we found these two pre-crystallization processes lead to different order of crystallization dynamics within the perovskite thin film,resulting in the differences of additive distribution.We then tailor-designed an additive molecule named 1,3-bis(4-methoxyphenyl)thiourea to obtain films with fewer defects and holes at the buried interface,and prepared perovskite solar cells with a certified efficiency of 23.75%.Furthermore,this work also demonstrates an efficiency of 20.18%for the large-area perovskite solar module(PSM)with an aperture area of 60.84 cm^(2).The PSM possesses remarkable continuous operation stability for maximum power point tracking of T_(90)>1000 h in ambient air.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12064034 and 11562017)the Leading Talents Program of Science and Technology Innovation in Ningxia Hui Autonomous Region,China(Grant No.2020GKLRLX08)the Natural Science Foundation of Ningxia Hui Autonomous Region,China(Grant No.2024AAC05040)。
文摘Atmospheric particle adsorption on insulator surfaces,coupled with humid environments,significantly affects contamination flashover,necessitating a clear understanding of the electric field distribution on insulator surfaces with adsorbed particles.This is crucial for accurately assessing insulator safety and informing critical decision-making.Although previous research has demonstrated that particle arrangement significantly influences the electric field distribution around transmission lines,an in-depth analysis of its effects on insulator surfaces remains lacking.To address this gap,this study establishes a composite insulator model to examine how three types of spherical contamination layers affect the electric field distribution on insulator surfaces under varying environmental conditions.The results reveal that in dry environments,the electric field strength at the apex of single-particle contamination layers increases with the particle size and relative permittivity.For the double-particle contamination layers,the electric field intensity on the insulator surface decreases as the particle spacing increases,and larger particles are more likely to attract smaller charged particles.For triple-particle contamination layers arranged in a triangular pattern,the maximum surface field strength is nearly double that of the chain-arranged particles.Furthermore,within the chain-arranged triple-particle contamination layers,a large-small-large size arrangement has a more pronounced impact on the surface electric field than a small-large-small size arrangement.In humid environments,the surface electric field strength of insulators decreases with increasing contamination levels.These findings are of significant theoretical and practical importance for ensuring the safe operation of power systems.
基金supported by the National Natural Science Foundation of China(No.12175283)Youth Innovation Promotion Association of Chinese Academy of Sciences(2020410)Advanced Energy Science and Technology Guangdong Laboratory(HND20TDSPCD,HND22PTDZD).
文摘Growth of high-quality Nb_(3)Sn thin films for superconducting radiofrequency(SRF)applications using the vapor diffusion method requires a uniform distribution of tin nuclei on the niobium(Nb)surface.This study examines the mechanism underlying the observed non-uniform distribution of tin nuclei with tin chloride SnCl_(2).Electron backscatter diffraction(EBSD)analysis was used to examine the correlation between the nucleation behavior and orientation of niobium grains in the substrate.The findings of the density functional theory(DFT)simulation are in good agreement with the experimental results,showing that the non-uniform distribution of tin nuclei is the result of the adsorption energy of SnCl_(2)molecules by varied niobium grain orientations.Further analysis indicated that the surface roughness and grain size of niobium also played significant roles in the nucleation behavior.This study provides valuable insights into enhancing the surface pretreatment of niobium substrates during the growth of Nb_(3)Sn thin films using the vapor diffusion method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62071381 and 62301430)Shaanxi Fundamental Science Research Project for Mathematics and Physics(Grant No.23JSY014)+1 种基金Scientific Research Plan Project of Shaanxi Education Department Natural Science Special Project(Grant No.23JK0680)Young Talent Fund of Xi’an Association for Science and Technology(Grant No.959202313011)。
文摘Continuous-variable quantum secure direct communication(CVQSDC)with Gaussian modulation(GM)demands a considerable quantity of random numbers during the preparation process and encodes them separately on the quadrature components of the quantum states.Hence,high-speed random number generators are required to satisfy this demand,which is difficult to implement in practical applications.CVQSDC with discrete modulation(DM),correspondingly,employs a finite number of quantum states to achieve encoding,which can circumvent the shortcomings of the GM scheme.Based on the advantages of DM,the issue of attaining the most optimal secrecy capacity and communication distance remains to be resolved.Here,we propose a CVQSDC protocol based on N-symbol amplitude phase shift keying(N-APSK),which exploits the Boltzmann-Maxwell distribution assisted probability shaping technique.In comparison with the uniform distribution,according to 32-APSK CVQSDC,the proposed scheme extends the communication distance by about 38%,while obtaining a higher secrecy capacity at the same communication distance.Furthermore,increasing the value of N will concurrently increase the quantity of rings in the constellation,thereby facilitating enhancements of communication distance.This work incorporates the modulation approaches prevalently employed in classical communication into the realm of quantum communication,attaining gratifying advancements in communication distance and secrecy capacity,and concurrently facilitating the integrated development of quantum communication and classical communication.
基金supported by the National Natural Science Foundation of China(No.12075237)。
文摘A new measurement method for the spatial distribution of neutron beam flux in boron neutron capture therapy(BNCT)is being developed based on the two-dimensional Micromegas detector.To address the issue of long processing times in traditional offline position reconstruction methods,this paper proposes a field programmable gate array based online position reconstruction method utilizing the micro-time projection chamber principle.This method encapsulates key technical aspects:a self-adaptive serial link technique built upon the dynamical adjustment of the delay chain length,fast sorting,a coordinate-matching technique based on the mapping between signal timestamps and random access memory(RAM)addresses,and a precise start point-merging technique utilizing a circular combined RAM.The performance test of the selfadaptive serial link shows that the bit error rate of the link is better than 10-12 at a confidence level of 99%,ensuring reliable data transmission.The experiment utilizing the readout electronics and Micromegas detector shows a spatial resolution of approximately 1.4 mm,surpassing the current method’s resolution level of 5 mm.The beam experiment confirms that the readout electronics system can obtain the flux spatial distribution of neutron beams online,thus validating the feasibility of the position reconstruction method.The online position reconstruction method avoids traditional methods,such as bubble sorting and traversal searching,simplifies the design of the logic firmware,and reduces the time complexity from O(n2)to O(n).This study contributes to the advancement in measuring neutron beam flux for BNCT.
文摘The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribution of Martian rocks mechanical property for the success of Mars exploration.In this paper,a fast and accurate probability distribution method for predicting the macroscale elastic modulus of Martian rocks was proposed by integrating the microscale rock mechanical experiments(micro-RME),accurate grain-based modeling(AGBM)and upscaling methods based on reliability principles.Firstly,the microstructure of NWA12564 Martian sample and elastic modulus of each mineral were obtained by micro-RME with TESCAN integrated mineral analyzer(TIMA)and nanoindentation.The best probability distribution function of the minerals was determined by Kolmogorov-Smirnov(K-S)test.Secondly,based on best distribution function of each mineral,the Monte Carlo simulations(MCS)and upscaling methods were implemented to obtain the probability distribution of upscaled elastic modulus.Thirdly,the correlation between the upscaled elastic modulus and macroscale elastic modulus obtained by AGBM was established.The accurate probability distribution of the macroscale elastic modulus was obtained by this correlation relationship.The proposed method can predict the probability distribution of Martian rocks mechanical property with any size and shape samples.
基金the National Natural Science Foundation of China(Nos.12375123,11975091,and 12305130)the Natural Science Foundation of Henan Province(No.242300421048)+1 种基金China Postdoctoral Science Foundation(No.2023M731016)Henan Postdoctoral Foundation(No.HN2022164).
文摘Neutron-skin thickness is a key parameter for a neutron-rich nucleus;however,it is difficult to determine.In the framework of the Lanzhou Quantum Molecular Dynamics(LQMD)model,a possible probe for the neutron-skin thickness(δ_(np))of neutron-rich ^(48)Ca was studied in the 140A MeV ^(48)Ca+^(9)Be projectile fragmentation reaction based on the parallel momentum distribution(p∥)of the residual fragments.A Fermi-type density distribution was employed to initiate the neutron density distributions in the LQMD simulations.A combined Gaussian function with different width parameters for the left side(Γ_(L))and the right side(Γ_(R))in the distribution was used to describe the p∥of the residual fragments.Taking neutron-rich sulfur isotopes as examples,Γ_(L) shows a sensitive correlation withδ_(np) of ^(48)Ca,and is proposed as a probe for determining the neutron skin thickness of the projectile nucleus.
基金supported by the Science and Technology Project of SGCC(kj2022-075).
文摘The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices that can flexibly control active and reactive power flows.With the exception of active power output,photovoltaic(PV)devices can provide reactive power compensation through an inverter.Thus,a synergetic optimization operation method for SOP and PV in a distribution network is proposed.A synergetic optimization model was developed.The voltage deviation,network loss,and ratio of photovoltaic abandonment were selected as the objective functions.The PV model was improved by considering the three reactive power output modes of the PV inverter.Both the load fluctuation and loss of the SOP were considered.Three multi-objective optimization algorithms were used,and a compromise optimal solution was calculated.Case studies were conducted using an IEEE 33-node system.The simulation results indicated that the SOP and PVs complemented each other in terms of active power transmission and reactive power compensation.Synergetic optimization improves power control capability and flexibility,providing better power quality and PV consumption rate.
基金supported by the National Natural Science Foundation of China (22169002)the Chongzuo Key Research and Development Program of China (20220603)the Counterpart Aid Project for Discipline Construction from Guangxi University(2023M02)
文摘P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phases remains a necessity.Herein,we design a P2/O3-type Na_(0.76)Ni_(0.31)Zn_(0.07)Mn_(0.50)Ti_(0.12)0_(2)(NNZMT)with high chemical/electrochemical stability by enhancing the coupling between the two phases.For the first time,a unique Na*extraction is observed from a Na-rich O3 phase by a Na-poor P2 phase and systematically investigated.This process is facilitated by Zn^(2+)/Ti^(4+)dual doping and calcination condition regulation,allowing a higher Na*content in the P2 phase with larger Na^(+)transport channels and enhancing Na transport kinetics.Because of reduced Na^(+)in the O3 phase,which increases the difficulty of H^(+)/Na^(+) exchange,the hydrostability of the O3 phase in NNZMT is considerably improved.Furthermore,Zn^(2+)/Ti^(4+)presence in NNZMT synergistically regulates oxygen redox chemistry,which effectively suppresses O_(2)/CO_(2) gas release and electrolyte decomposition,and completely inhibits phase transitions above 4.0 V.As a result,NNZMT achieves a high discharge capacity of 144.8 mA h g^(-1) with a median voltage of 3.42 V at 20 mA g^(-1) and exhibits excellent cycling performance with a capacity retention of 77.3% for 1000 cycles at 2000 mA g^(-1).This study provides an effective strategy and new insights into the design of high-performance layered-oxide cathode materials with enhanced structure/interface stability forSIBs.
基金Supported by the National Natural Science Foundation of China(42090022)。
文摘Based on the situation and progress of marine oil/gas exploration in the Sichuan Basin,SW China,the whole petroleum system is divided for marine carbonate rocks of the basin according to the combinations of hydrocarbon accumulation elements,especially the source rock.The hydrocarbon accumulation characteristics of each whole petroleum system are analyzed,the patterns of integrated conventional and unconventional hydrocarbon accumulation are summarized,and the favorable exploration targets are proposed.Under the control of multiple extensional-convergent tectonic cycles,the marine carbonate rocks of the Sichuan Basin contain three sets of regional source rocks and three sets of regional cap rocks,and can be divided into the Cambrian,Silurian and Permian whole petroleum systems.These whole petroleum systems present mainly independent hydrocarbon accumulation,containing natural gas of affinity individually.Locally,large fault zones run through multiple whole petroleum systems,forming a fault-controlled complex whole petroleum system.The hydrocarbon accumulation sequence of continental shelf facies shale gas accumulation,marginal platform facies-controlled gas reservoirs,and intra-platform fault-and facies-controlled gas reservoirs is common in the whole petroleum system,with a stereoscopic accumulation and orderly distribution pattern.High-quality source rock is fundamental to the formation of large gas fields,and natural gas in a whole petroleum system is generally enriched near and within the source rocks.The development and maintenance of large-scale reservoirs are essential for natural gas enrichment,multiple sources,oil and gas transformation,and dynamic adjustment are the characteristics of marine petroleum accumulation,and good preservation conditions are critical to natural gas accumulation.Large-scale marginal-platform reef-bank facies zones,deep shale gas,and large-scale lithological complexes related to source-connected faults are future marine hydrocarbon exploration targets in the Sichuan Basin.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61505261,62101597,61605248,and 61675235)the National Key Research and Development Program of China (Grant No.2020YFA0309702)+2 种基金the China Postdoctoral Science Foundation (Grant No.2021M691536)the Natural Science Foundation of Henan Province,China (Grant Nos.202300410534 and 202300410532)the Fund of the Anhui Initiative in Quantum Information Technologies。
文摘The reference-frame-independent(RFI)quantum key distribution(QKD)is suitable for satellite-based links by removing the active alignment on the reference frames.However,how the beam wandering influences the performance of RFI-QKD remains a pending issue in satellite-to-ground links.In this paper,based on the mathematical model for characterizing beam wandering,we present the security analysis for satellite-to-ground RFI-QKD and analytically derive formulas for calculating the secret key rate with beam wandering.Our simulation results show that the performance of RFI-QKD is better than the Bennett–Brassard 1984(BB84)QKD with beam wandering in asymptotic case.Furthermore,the degree of influences of beam wandering is specifically presented for satellite-to-ground RFI-QKD when statistical fluctuations are taken into account.Our work can provide theoretical support for the realization of RFI-QKD using satellite-to-ground links and have implications for the construction of large-scale satellite-based quantum networks.
基金supported by the National Natural Science Foundation of China(32060340 and 31400542)the Scientific Research Capacity Building Project for Laibin Jinxiu Dayaoshan Forest Ecosystem Observation and Research Station of Guangxi(22-035-130-01).
文摘The reverse J-shaped diameter distribution is considered an inherent attribute of natural forests,cru-cial for forest resource utilization and community stability.However,in karst regions,intense habitat heterogeneity might alter species composition,spatial distribution,growth,biomass allocation,and mortality processes,yet its impact on diameter structure remains unclear.A fixed plot of 200 m×110 m was established in the Nanpan River Basin,Southwest China,within an old-growth oak forest(>300 years old),and the influence of site substrates(i.e.,rock and soil),topographic factors,sample area,and orientation on diameter distribution was analyzed.Trees on both rock and soil exhibited a reverse-J shape,quantifiable Project funding:This work was supported by the National Natural Science Foundation of China(32060340 and 31400542),the Scientific Research Capacity Building Project for Laibin Jinxiu Dayaoshan Forest Ecosystem Observation and Research Station of Guangxi(22-035-130-01).through the Weibull function.The substrates had a similar density,approximately 2100 plants/ha.However,the average and range of diameter of trees on rock were smaller than those on soil,suggesting that rock constrains tree growth.The diameter distribution of trees across microtopography also displayed a reverse-J shape.Yet,higher elevations and sunny slopes showed a greater curvature of diameter classes compared to lower elevations and shady slopes,indicating habitat preferences in karst trees.Sample area and orientation had minimal effects on diameter class curve that reached stability when the plot size was 6000 m2.These results suggest that the reverse J-shaped diameter distribution prevails at small scales in karst old-growth forests,encompassing multiple curvatures and spanning forest ecosystems.
基金the Open Foundation of Key Lab-oratory of Software Engineering of Yunnan Province(Grant Nos.2020SE308 and 2020SE309).
文摘In the realm of public goods game,punishment,as a potent tool,stands out for fostering cooperation.While it effectively addresses the first-order free-rider problem,the associated costs can be substantial.Punishers incur expenses in imposing sanctions,while defectors face fines.Unfortunately,these monetary elements seemingly vanish into thin air,representing a loss to the system itself.However,by virtue of the redistribution of fines to cooperators and punishers,not only can we mitigate this loss,but the rewards for these cooperative individuals can be enhanced.Based upon this premise,this paper introduces a fine distribution mechanism to the traditional pool punishment model.Under identical parameter settings,by conducting a comparative experiment with the conventional punishment model,the paper aims to investigate the impact of fine distribution on the evolution of cooperation in spatial public goods game.The experimental results clearly demonstrate that,in instances where the punishment cost is prohibitively high,the cooperative strategies of the traditional pool punishment model may completely collapse.However,the model enriched with fine distribution manages to sustain a considerable number of cooperative strategies,thus highlighting its effectiveness in promoting and preserving cooperation,even in the face of substantial punishment cost.
基金supported by the National Natural Science Foundation of China(Grant Nos.61505261,62101597,61605248,and 61675235)the National Key Research and Development Program of China(Grant No.2020YFA0309702)+2 种基金the China Postdoctoral Science Foundation(Grant No.2021M691536)the Natural Science Foundation of Henan Province(Grant Nos.202300410534 and 202300410532)the Anhui Initiative in Quantum Information Technologies.
文摘The data post-processing scheme based on two-way classical communication(TWCC)can improve the tolerable bit error rate and extend the maximal transmission distance when used in a quantum key distribution(QKD)system.In this study,we apply the TWCC method to improve the performance of reference-frame-independent quantum key distribution(RFI-QKD),and analyze the influence of the TWCC method on the performance of decoy-state RFI-QKD in both asymptotic and non-asymptotic cases.Our numerical simulation results show that the TWCC method is able to extend the maximal transmission distance from 175 km to 198 km and improve the tolerable bit error rate from 10.48%to 16.75%.At the same time,the performance of RFI-QKD in terms of the secret key rate and maximum transmission distance are still greatly improved when statistical fluctuations are considered.We conclude that RFI-QKD with the TWCC method is of practical interest.
基金supported by the National Natural Science Foundation of China[32172259]Key Research and Development Project of Henan Province[231111111800]+1 种基金Innovative Funds Plan of Henan University of Technology [2021ZKCJ03]The Program for the Top Young Talents of Henan Associate for Science and Technology.
文摘Selenium is one of the essential trace elements in human body,however,due to the limitation of geographic factors,the intake of selenium is seriously insufficient in most regions.In this study,selenium-enriched peanut sprouts with high selenium content were prepared by soaking peanut seeds in sodium selenite.The content and distribution of selenium in germinated peanuts were investigated.The results showed that 200μmol/L sodium selenite and germination for 6 days resulted in the highest total selenium,organic selenium content,and organic selenium conversion in peanut sprouts.Selenium exists in peanut sprouts mainly in organic selenium form,of which selenoproteins are the most critical organic selenium carriers.ABTS free radical scavenging capacity and reducing power assays showed that alkali-soluble protein had the highest antioxidant activity among the four soluble proteins,attributed to its high selenium binding level.Radicle and cotyledons of peanut seedlings were significantly enriched with selenium compared to hypocotyl.Amino acid analysis and SDS-PAGE results showed that selenium increases significantly after peanut germination and selenium enrichment.This study provides a simple,environmentally friendly,and effective way of selenium enrichment and offers a theoretical basis for applying selenium-enriched foods in food and medicine.
基金Project supported by the National Natural Science Foundation of China(Grant No.11471263)the Natural Science Foundation of Xinjiang Uygur Autonomous Region,China(Grant No.2021D01B09)+1 种基金the Initial Research Foundation of Kashi University(Grant No.022024076)“Mathematics and Finance Research Centre Funding Project”,Dazhou Social Science Federation(Grant No.SCMF202305)。
文摘A non-Maxwellian collision kernel is employed to study the evolution of wealth distribution in a multi-agent society.The collision kernel divides agents into two different groups under certain conditions. Applying the kinetic theory of rarefied gases, we construct a two-group kinetic model for the evolution of wealth distribution. Under the continuous trading limit, the Fokker–Planck equation is derived and its steady-state solution is obtained. For the non-Maxwellian collision kernel, we find a suitable redistribution operator to match the taxation. Our results illustrate that taxation and redistribution have the property to change the Pareto index.
文摘Purpose:To analyze the diversity of citation distributions to publications in different research topics to investigate the accuracy of size-independent,rank-based indicators.The top percentile-based indicators are the most common indicators of this type,and the evaluations of Japan are the most evident misjudgments.Design/methodology/approach:The distributions of citations to publications from countries and journals in several research topics were analyzed along with the corresponding global publications using histograms with logarithmic binning,double rank plots,and normal probability plots of log-transformed numbers of citations.Findings:Size-independent,top percentile-based indicators are accurate when the global ranks of local publications fit a power law,but deviations in the least cited papers are frequent in countries and occur in all journals with high impact factors.In these cases,a single indicator is misleading.Comparisons of the proportions of uncited papers are the best way to predict these deviations.Research limitations:This study is fundamentally analytical,and its results describe mathematical facts that are self-evident.Practical implications:Respectable institutions,such as the OECD,the European Commission,and the U.S.National Science Board,produce research country rankings and individual evaluations using size-independent percentile indicators that are misleading in many countries.These misleading evaluations should be discontinued because they can cause confusion among research policymakers and lead to incorrect research policies.Originality/value:Studies linking the lower tail of citation distribution,including uncited papers,to percentile research indicators have not been performed previously.The present results demonstrate that studies of this type are necessary to find reliable procedures for research assessments.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12074194,12104240,and 62101285)the Industrial Prospect and Key Core Technology Projects of Jiangsu Provincial Key Research and Development Program(Grant No.BE2022071)the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK20192001 and BK20210582).
文摘Encoding system plays a significant role in quantum key distribution(QKD).However,the security and performance of QKD systems can be compromised by encoding misalignment due to the inevitable defects in realistic devices.To alleviate the influence of misalignments,a method exploiting statistics from mismatched basis is proposed to enable uncharacterized sources to generate secure keys in QKD.In this work,we propose a scheme on four-intensity decoy-state quantum key distribution with uncharacterized heralded single-photon sources.It only requires the source states are prepared in a two-dimensional Hilbert space,and can thus reduce the complexity of practical realizations.Moreover,we carry out corresponding numerical simulations and demonstrate that our present four-intensity decoy-state scheme can achieve a much higher key rate compared than a three-intensity decoy-state method,and meantime it can obtain a longer transmission distance compared than the one using weak coherent sources.
基金supported by the National Natural Science Foundation of China (52172159)the Postdoctoral Fellowship Program of CPSF (GZB20230631)。
文摘Aqueous zinc metal batteries (AZMBs) are hindered by uncontrolled dendrites and side reactions during commercialization,despite their advantages of safety and high capacity density.Herein,we propose the electrical feedback strategy to restrain the Zn dendrites resulting from the"tip effect"and optimize interfacial Zn^(2+)distribution to accelerate electrodeposition kinetics by using the lithium niobate (LNO) layer.Specifically,at the bumps of the zinc anode,the ferroelectric LNO is polarized by the locally strong electric field,which in turn counteracts the"tip effect".In this way,the dynamic polarization of LNO can repair the uneven tip electric field to achieve uniform and flat zinc deposition.In addition,owing to the interaction between Nb and Zn^(2+),a higher concentration of Zn^(2+)near the zincophilic LNO@Zn surface is obtained for the rapid electrochemical reaction kinetics of plating.Considering the aforementioned advantages,the LNO@Zn anode harvests stable cycling over 1200 h at 10 mA cm^(-2)with a superior cumulative capacity of 5800 mAh cm^(-2).Assembled with the a-MnO_(2) cathode,the full cell using LNO@Zn anode exhibits the slower capacity decay (0.054%per cycle) during 1000 cycles.This strategy provides a perspective for stabilizing zinc metal anodes through dynamic electrical response and interfacial ion redistribution effect.