期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
锅炉过热汽温系统的DRNN网络自整定PID控制 被引量:24
1
作者 王东风 韩璞 郭启刚 《中国电机工程学报》 EI CSCD 北大核心 2004年第8期196-200,共5页
火电厂过热汽温控制系统具有大惯性、大迟延、参数慢时变的特点,受到的扰动因素较多;随机组负荷的变化又表现出参数快时变的特性,常规的按照典型工况整定的固定参数PID控制难以适应负荷变化,往往未能取得满意的调节效果。为此,提出一种... 火电厂过热汽温控制系统具有大惯性、大迟延、参数慢时变的特点,受到的扰动因素较多;随机组负荷的变化又表现出参数快时变的特性,常规的按照典型工况整定的固定参数PID控制难以适应负荷变化,往往未能取得满意的调节效果。为此,提出一种基于DRNN的两级神经网络的过热汽温系统自整定PID控制策略,其中两级神经网络分别为静态网络SNN和动态网络DNN,SNN依据机组运行工况如负荷进行PID参数的粗调整定,以适应机组负荷的较大范围变化,如参与调峰:DNN依据偏差和偏差变化率进行PID参数的细调整定,以克服机组负荷的小范围变化、参数的慢时变漂移 和各种扰动。为了克服系统的大惯性和大迟延,引入灰色预测器对未来信号进行预测,预测结果作为DNN使用的整定信息。对某汽温系统的计算机仿真研究结果表明:基于两级神经网络自整定控制策略的主汽温控制系统获得了良好的动态调节品质,具有较强的鲁棒性。 展开更多
关键词 锅炉 过热器 汽温系统 drnn网络 自整定PID控制 灰色预测理论 神经网络
在线阅读 下载PDF
基于自适应DRNN的无刷直流电机控制方法研究 被引量:1
2
作者 王立标 李军 +1 位作者 范剑 李绣峰 《中国机械工程》 EI CAS CSCD 北大核心 2011年第19期2337-2340,2392,共5页
针对无刷直流电机速度控制存在高度非线性特性,提出了基于自适应DRNN(diagonal re-current neural network)的"前馈+反馈"控制方法。反馈控制器以目标转速与实际转速的误差为输入量,采用PI控制来提高控制系统的稳定性。前馈... 针对无刷直流电机速度控制存在高度非线性特性,提出了基于自适应DRNN(diagonal re-current neural network)的"前馈+反馈"控制方法。反馈控制器以目标转速与实际转速的误差为输入量,采用PI控制来提高控制系统的稳定性。前馈控制器采用DRNN,以反馈控制器的输出作为性能误差进行自适应控制,以提高控制系统的瞬态响应性能。仿真和实验结果表明:该控制系统能较好地跟踪目标转速,在突变负载扰动下,能有效地改善相电流波形,降低电机电磁转矩脉动,而且该控制系统具有较强的鲁棒性。 展开更多
关键词 无刷直流电机 自适应 drnn 鲁棒性
在线阅读 下载PDF
大数据背景下基于改进RNN的低压配电网线损智能分析方法 被引量:9
3
作者 李学军 张世元 《沈阳工业大学学报》 北大核心 2025年第1期130-136,共7页
【目的】在电力系统中,线损率是衡量电网系统设计、运维和管理水平的重要经济技术指标,对于保障电网的稳定经济运行、提高供电效率具有重要意义。然而,在用户数量激增、用能特征多样化的大数据背景下,线损率的计算评价工作面临较大挑战... 【目的】在电力系统中,线损率是衡量电网系统设计、运维和管理水平的重要经济技术指标,对于保障电网的稳定经济运行、提高供电效率具有重要意义。然而,在用户数量激增、用能特征多样化的大数据背景下,线损率的计算评价工作面临较大挑战。传统线损计算方法依赖于电网参数,精细化程度偏低,计算准确率不佳。【方法】针对该问题,提出了一种基于改进循环神经网络(RNN)的低压配电网线损智能分析方法,旨在通过智能化手段提高线损计算的准确性和效率。方法利用K-means算法对智能配电网的海量用户数据进行分类预处理,以降低数据冗余度。采用层次分析法(AHP)从分类数据中提取线损指标,这些指标随后被输入到深度学习模型中,其中,核心深度学习模型是由卷积神经网络(CNN)和改进长短时记忆网络(LSTM)模型融合而成,该模型能够挖掘配电网数据特征,实现线损的智能分析。通过IEEE33节点的仿真模型进行实验验证,充分展示所提方法的有效性。【结果】实验结果表明,所提方法的均方误差(MSE)和相对误差百分数(RE)分别为3.15 MW和2.43%,计算精度较高。与现有方法相比,所提方法在大数据背景下的配电网线损智能分析中具有明显优势,能够全面考虑各种配电网的影响因素,获得更精准的线损计算结果。此外,通过与两种经典文献方法进行对比实验,进一步验证所提方法的性能优势。【结论】基于改进RNN模型的低压配电网线损智能分析方法通过K-means算法和AHP预处理提取线损指标,再利用CNN-LSTM模型进行深入分析,有效提高了线损计算的准确性和效率。该方法主要针对低压配电网线路侧的线损进行分析,对于更高等级电压的线损分析尚未深入研究,但其在低压配电网线损智能分析中显示出优异的结果,具有实际应用价值。未来的研究将扩展到更广泛的校验分析,以提高方法的全面性和可靠性。此外,该方法的提出也为智能配电网的进一步研究和应用提供了新的思路和工具,有助于推动智能电网技术的发展和应用。通过这种方法,不仅可以提高线损计算的准确性,还能为电网的优化管理提供科学依据,对于提升电网运行效率、降低能源损耗具有重要的实际意义。随着技术的不断进步和数据量的日益增加,智能化的线损分析方法将成为电力系统运维中不可或缺的一部分。 展开更多
关键词 大数据 低压配电网 K-MEANS聚类 层次分析法 特征提取 CNN-LSTM模型 智能线损分析 循环神经网络
在线阅读 下载PDF
基于DRNN动态整定PMSM的SVPWM控制
4
作者 胡雪峰 谭国俊 《机电工程》 CAS 2007年第6期61-64,共4页
为解决传统的永磁同步电机控制系统中存在的低速转矩脉动大以及由此引起的高频噪声、动态响应慢等问题,提出了一种基于对角神经网络动态自整定的永磁同步电机矢量控制系统的实施方案。给出了基于对角递归神经网络的PID动态自整定控制器... 为解决传统的永磁同步电机控制系统中存在的低速转矩脉动大以及由此引起的高频噪声、动态响应慢等问题,提出了一种基于对角神经网络动态自整定的永磁同步电机矢量控制系统的实施方案。给出了基于对角递归神经网络的PID动态自整定控制器的结构,以及PID参数动态自整定的学习控制算法,并将这种综合控制策略引入永磁同步电机空间电压矢量PWM控制中。仿真结果表明,系统低速性能好,转矩脉动小,谐波含量少,当电机参数改变或者受到外部扰动时,系统具有良好的动态特性。 展开更多
关键词 对角递归神经网络 动态整定 空间矢量脉宽调制 综合控制 永磁同步电机
在线阅读 下载PDF
基于DRNN网络的风力辅助提水机自整定PID控制
5
作者 杜福银 《中国农村水利水电》 北大核心 2011年第10期93-95,105,共4页
基于风力机和离心水泵的特点,提出了一种风力辅助提水机结构及该机的控制系统。该机是一个耦合的两输入两输出时变系统,系统存在的响应较慢,负荷的随机变化及参数快时变的特性。固定参数PID控制难以适应此系统控制要求,因此,提出一种基... 基于风力机和离心水泵的特点,提出了一种风力辅助提水机结构及该机的控制系统。该机是一个耦合的两输入两输出时变系统,系统存在的响应较慢,负荷的随机变化及参数快时变的特性。固定参数PID控制难以适应此系统控制要求,因此,提出一种基于回归神经网络(DRNN)的两输入两输出PID控制器结构,给出了DRNN神经网络参数学习算法和PID控制器参数自整定算法。使该系统能在自然界的风速随机变化的情况下使风力机最大可能利用风能,同时与离心水泵输出功率匹配.计算机仿真结果验证了该控制策略可行性,这为以后进一步研究奠定了基础。 展开更多
关键词 风力辅助提水机 耦合 PID控制 回归神经网络(drnn)
在线阅读 下载PDF
基于DRNN的纸机定量水分解耦控制仿真分析 被引量:4
6
作者 周炜 胡慕伊 《中国造纸学报》 CAS CSCD 北大核心 2010年第1期72-74,共3页
针对抄纸过程中具有的强耦合、大时滞特点,提出了一种自适应的PID解耦控制方法,利用对角回归神经网络(DRNN)来辨识系统模型,通过对PID控制器参数进行调整,实现多变量解耦控制。对纸机定量、水分控制系统的仿真研究结果表明:该方法具有... 针对抄纸过程中具有的强耦合、大时滞特点,提出了一种自适应的PID解耦控制方法,利用对角回归神经网络(DRNN)来辨识系统模型,通过对PID控制器参数进行调整,实现多变量解耦控制。对纸机定量、水分控制系统的仿真研究结果表明:该方法具有较快的系统响应和抗干扰能力,较好地解决了定量和水分之间的耦合作用。 展开更多
关键词 定量 水分 解耦控制 对角回归神经网络(drnn)
在线阅读 下载PDF
基于TSA-DRNN模型的年径流预测研究 被引量:4
7
作者 崔东文 杨琼波 《华北水利水电大学学报(自然科学版)》 北大核心 2021年第6期35-41,共7页
为了解决深度递归神经网络(DRNN)权值和阈值难以选取的问题,有效提高DRNN径流预测精度,提出了被囊群算法(TSA)与DRNN相融合的预测方法。选取4个标准测试函数对TSA进行仿真验证,并与粒子群优化(PSO)算法的仿真结果进行比较;通过主成分分... 为了解决深度递归神经网络(DRNN)权值和阈值难以选取的问题,有效提高DRNN径流预测精度,提出了被囊群算法(TSA)与DRNN相融合的预测方法。选取4个标准测试函数对TSA进行仿真验证,并与粒子群优化(PSO)算法的仿真结果进行比较;通过主成分分析(PCA)对数据样本进行降维并构建DRNN_(2)(双隐层DRNN)、DRNN_(3)(三隐层DRNN)、DRNN_(4)(四隐层DRNN)模型,利用TSA优化DRNN权值和阈值,建立了TSA-DRNN_(2)、TSA-DRNN_(3)、TSA-DRNN_(4)径流预测模型,并构建TSA-Elman、Elman、DRNN_(2)、DRNN_(3)、DRNN_(4)、TSA-SVM模型作对比;利用云南省姑老河站年径流预测实例对TSA-DRNN_(2)、TSA-DRNN_(3)、TSADRNN_(4)、TSA-Elman、Elman、DRNN_(2)、DRNN_(3)、DRNN_(4)、TSA-SVM模型进行检验。结果表明:在不同维度条件下,TSA仿真效果优于PSO算法,具有较好的寻优精度和全局搜索能力;TSA-DRNN_(2)、TSA-DRNN_(3)、TSADRNN_(4)模型对实例年径流预测的平均相对误差分别为3.63%、2.81%、2.50%,预测精度优于TSA-Elman等其他6种模型,且随着隐含层数的增加,预测精度呈提高趋势。TSA-DRNN模型用于径流预测是可行的,模型及DRNN权、阈值优化方法可为相关预测研究提供参考。 展开更多
关键词 径流预测 深度递归神经网络(drnn) 被囊群算法(TSA) 仿真验证 数据降维 权、阈值优化
在线阅读 下载PDF
DRNN在多传感器泥石流监测系统中的应用
8
作者 徐根祺 曹宁 +3 位作者 谢国坤 马婧 南江萍 张佳绮 《传感器与微系统》 CSCD 北大核心 2022年第11期152-155,160,共5页
针对当前泥石流监测预警系统中预测准确性不高的问题,根据分布式计算和各传感器网络节点之间局部通信的方式,利用分布式递归神经网络(DRNN)预测故障传感器节点的数据,使用DRNN的预测值,对泥石流发生概率进行预测。实验结果表明:当传感... 针对当前泥石流监测预警系统中预测准确性不高的问题,根据分布式计算和各传感器网络节点之间局部通信的方式,利用分布式递归神经网络(DRNN)预测故障传感器节点的数据,使用DRNN的预测值,对泥石流发生概率进行预测。实验结果表明:当传感器网络的链路质量较低或较多传感器发生故障的情况下,使用DRNN依然能够较准确地预测出泥石流发生的概率,该方法可靠性较高。 展开更多
关键词 分布式递归神经网络 无线传感器网络 泥石流灾害 监测预警
在线阅读 下载PDF
融合改进布谷鸟搜索算法和DRNN的非线性系统辨识
9
作者 朱笑花 王宇野 《陕西科技大学学报》 CAS 2018年第5期159-164,168,共7页
针对非线性系统的辨识问题,引入了对角回归神经网络模型.为了对辨识模型进行优化,设计了一种新的杂交操作策略,并将该策略引入到布谷鸟搜索中,获得改进的布谷鸟搜索算法(hCS).通过对12个典型测试函数的数值寻优实验,结果表明,所提出的... 针对非线性系统的辨识问题,引入了对角回归神经网络模型.为了对辨识模型进行优化,设计了一种新的杂交操作策略,并将该策略引入到布谷鸟搜索中,获得改进的布谷鸟搜索算法(hCS).通过对12个典型测试函数的数值寻优实验,结果表明,所提出的算法与基本的布谷鸟算法相比,其解的精度有了明显的提高.将所提出的算法用于2个非线性系统神经网络辨识模型的优化,仿真结果表明hCS优化的模型拟合精度更高. 展开更多
关键词 布谷鸟搜索算法 杂交操作策略 对角回归神经网络 非线性系统辨识
在线阅读 下载PDF
基于遗传优化聚类的GRU无损电力监测数据压缩 被引量:3
10
作者 屈志坚 帅诚鹏 +2 位作者 吴广龙 梁家敏 李迪 《电力系统及其自动化学报》 CSCD 北大核心 2024年第4期1-8,18,共9页
针对电力调度中心监测数据记录体量大、存储困难的问题,提出基于遗传优化K-means聚类的门控循环单元神经网络无损数据压缩方法。首先,搭建分布式集群,将多维原始电力数据聚类成相似性较高的数据块,并利用遗传算法对聚类进行寻优,提高数... 针对电力调度中心监测数据记录体量大、存储困难的问题,提出基于遗传优化K-means聚类的门控循环单元神经网络无损数据压缩方法。首先,搭建分布式集群,将多维原始电力数据聚类成相似性较高的数据块,并利用遗传算法对聚类进行寻优,提高数据聚类的效果;再通过门控循环单元神经网络训练数据编码的概率分布模型,结合算术编码对数据进行编码压缩;最后,以多个电力数据集为算例进行分析。经验证本文所提的压缩算法能实现数据的高比例压缩、优化集群性能。 展开更多
关键词 电力数据 遗传算法 聚类分析 循环神经网络 分布式集群压缩
在线阅读 下载PDF
基于时空图注意力网络的超短期区域负荷预测 被引量:15
11
作者 赵紫昱 陈渊睿 +2 位作者 陈霆威 刘俊峰 曾君 《电力系统自动化》 EI CSCD 北大核心 2024年第12期147-155,共9页
目前,空间负荷预测研究对复杂时空关系的考虑不足。为此,文中提出一种基于多维、多源特征的区域级负荷超短期时空预测模型。首先,根据已有的区域级负荷进行元胞划分,构建考虑元胞相关性的图拓扑。其次,分别通过图注意力网络、一维卷积... 目前,空间负荷预测研究对复杂时空关系的考虑不足。为此,文中提出一种基于多维、多源特征的区域级负荷超短期时空预测模型。首先,根据已有的区域级负荷进行元胞划分,构建考虑元胞相关性的图拓扑。其次,分别通过图注意力网络、一维卷积神经网络和门控循环单元,从空间、特征和时间维度提取有效特征,连接全连接层输出结果。最后,基于美国新英格兰地区的真实电力负荷数据进行仿真验证,并提取模型注意力权重,分析元胞之间的空间依赖性。结果表明,所提模型相比传统模型在不同预测步长上均具有更高的预测精度和稳定性,有效挖掘了区域级负荷的空间依赖性。 展开更多
关键词 负荷预测 负荷空间分布 卷积神经网络 门控循环单元 注意力机制 可解释性
在线阅读 下载PDF
基于双向长短期记忆和多层级联注意力的配电网态势感知模型 被引量:2
12
作者 袁新平 原野 +1 位作者 王海燕 唐铭 《计算机应用》 CSCD 北大核心 2024年第S01期343-346,共4页
配电网态势感知的准确性和及时性对保障电网工作的稳定性具有重要意义。针对传统方法中存在模型提取关键特征不显著、对特征的深层关系挖掘不深入和算法鲁棒性较弱等问题,提出一种基于双向长短期记忆(Bi-LSTM)和多层级联注意力的配电网... 配电网态势感知的准确性和及时性对保障电网工作的稳定性具有重要意义。针对传统方法中存在模型提取关键特征不显著、对特征的深层关系挖掘不深入和算法鲁棒性较弱等问题,提出一种基于双向长短期记忆(Bi-LSTM)和多层级联注意力的配电网态势感知模型。首先,利用Bi-LSTM网络捕捉与学习配电网故障因素的浅层语义特征;其次,提出多层级联注意力模块,通过学习不同周期的数据曲线函数,增强模型对数据分布的拟合能力;最后,通过实验验证所提模型的有效性。在全省16个州(市)的电力数据上的实验结果显示,所提模型的平均绝对百分比误差(mAPE)和均方根误差(RMSE)分别为2.04%与20.4,验证了所提模型的有效性。 展开更多
关键词 态势感知 双向循环神经网络 多层级联注意力 配电网 深度学习
在线阅读 下载PDF
基于深度自回归循环神经网络的边缘负载预测
13
作者 陈礼贤 梁杰 +3 位作者 黄一帆 陈哲毅 于正欣 陈星 《小型微型计算机系统》 CSCD 北大核心 2024年第2期359-366,共8页
为了更好地支持边缘计算服务提供商进行资源的提前配置与合理分配,负载预测被认为是边缘计算中的一项重要的技术支撑.传统的负载预测方法在面对具有明显趋势或规律性的负载时能取得良好的预测效果,但是它们无法有效地对边缘环境中高度... 为了更好地支持边缘计算服务提供商进行资源的提前配置与合理分配,负载预测被认为是边缘计算中的一项重要的技术支撑.传统的负载预测方法在面对具有明显趋势或规律性的负载时能取得良好的预测效果,但是它们无法有效地对边缘环境中高度变化的负载取得精确的预测.此外,这些方法通常将预测模型拟合到独立的时间序列上,进而进行单点负载实值预测.但是在实际边缘计算场景中,得到未来负载变化的概率分布情况会比直接预测未来负载的实值更具应用价值.为了解决上述问题,本文提出了一种基于深度自回归循环神经网络的边缘负载预测方法(Edge Load Prediction with Deep Auto-regressive Recurrent networks,ELP-DAR).所提出的ELP-DAR方法利用边缘负载时序数据训练深度自回归循环神经网络,将LSTM集成至S2S框架中,进而直接预测下一时间点负载概率分布的所有参数.因此,ELP-DAR方法能够高效地提取边缘负载的重要表征,学习复杂的边缘负载模式进而实现对高度变化的边缘负载精确的概率分布预测.基于真实的边缘负载数据集,通过大量仿真实验对所提出ELP-DAR方法的有效性进行了验证与分析.实验结果表明,相比于其他基准方法,所提出的ELP-DAR方法可以取得更高的预测精度,并且在不同预测长度下均展现出了优越的性能表现. 展开更多
关键词 边缘计算 负载预测 概率分布 深度自回归 循环神经网络
在线阅读 下载PDF
基于动态递归神经网络的木材干燥模型辨识 被引量:12
14
作者 张冬妍 胡昆仑 赵真非 《森林工程》 北大核心 2003年第6期10-12,共3页
木材干燥是一个复杂的非线性系统 ,由于木材结构复杂且具有多样性和变异性 ,因此要建立一个理想的符合木材干燥过程的模型是很困难。本文利用动态递归神经网络的特点 ,提出了基于动态递归神经网络的木材干燥模型辨识方法 ,给出了动态递... 木材干燥是一个复杂的非线性系统 ,由于木材结构复杂且具有多样性和变异性 ,因此要建立一个理想的符合木材干燥过程的模型是很困难。本文利用动态递归神经网络的特点 ,提出了基于动态递归神经网络的木材干燥模型辨识方法 ,给出了动态递归状态 -输出神经网络的结构和学习算法。并通过对辨识得到的模型的仿真结果 。 展开更多
关键词 动态递归神经网络 木材干燥 辨识 仿真 状态-输出模型
在线阅读 下载PDF
基于对角递归神经网络整定的PID解耦单元机组负荷控制系统 被引量:13
15
作者 刘红军 韩璞 于希宁 《动力工程》 CSCD 北大核心 2004年第6期809-812,818,共5页
针对火电厂单元机组具有多变量强耦合、非线性及参数时变的受控对象,提出了基于对角递归神经网络整定的PID解耦控制方法,其主要特点是能够提供一个对角递归神经网络来辩识系统模型,进而对PID控制器参数进行整定,实现多变量解耦控制。通... 针对火电厂单元机组具有多变量强耦合、非线性及参数时变的受控对象,提出了基于对角递归神经网络整定的PID解耦控制方法,其主要特点是能够提供一个对角递归神经网络来辩识系统模型,进而对PID控制器参数进行整定,实现多变量解耦控制。通过对火电机组负荷控制系统的设计和仿真研究,表明系统达到了动态近似解耦、静态完全解耦和无静差跟踪,并具有响应速度快,鲁棒性好等特点。 展开更多
关键词 自动控制技术 单元机组 对角递归神经网络(drnn) 解耦控制 PID控制 负荷控制
在线阅读 下载PDF
基于分布式神经动态优化的综合能源系统多目标优化调度 被引量:13
16
作者 黄博南 王勇 +2 位作者 李玉帅 刘鑫蕊 杨超 《自动化学报》 EI CAS CSCD 北大核心 2022年第7期1718-1736,共19页
研究了基于神经动态优化的综合能源系统(Integrated energy systems,IES)分布式多目标优化调度问题.首先,将IES元件单元(包含负荷)作为独立的决策主体,联合考量其运行成本和排放成本,并计及多能源设备间的传输损耗,提出了IES多目标优化... 研究了基于神经动态优化的综合能源系统(Integrated energy systems,IES)分布式多目标优化调度问题.首先,将IES元件单元(包含负荷)作为独立的决策主体,联合考量其运行成本和排放成本,并计及多能源设备间的传输损耗,提出了IES多目标优化调度模型,该模型可描述为一类非凸多目标优化问题.其次,针对此类问题的求解,提出了一种基于神经动力学系统的分布式多目标优化算法,该算法基于动态权重的神经网络模型,可以解决不可分离的不等式约束问题.该算法计算负担小,收敛速度快,并且易于硬件实现.仿真结果表明,所提算法能同时协调综合能源系统的经济性和环境性这两个冲突的目标,且获得了整个帕累托前沿,有效降低了综合能源系统的污染物排放量和综合运行成本. 展开更多
关键词 综合能源系统 分布式多目标优化 递归神经网络 神经动态 非凸
在线阅读 下载PDF
基于循环神经网络的微电网并网等效建模 被引量:3
17
作者 蔡昌春 赫卫国 +3 位作者 程述成 江冰 邓立华 张建勇 《电力科学与技术学报》 CAS 北大核心 2017年第1期43-48,共6页
提出一种基于循环神经网络的微电网并网动态等效模型,利用人工神经网络的非线性映射特性,解决微电网系统并网接入的等效建模问题。根据微电网并网接入点的电压、电流、功率等测量数据,构建循环神经网络等效模型,将接入点电压和电流分别... 提出一种基于循环神经网络的微电网并网动态等效模型,利用人工神经网络的非线性映射特性,解决微电网系统并网接入的等效建模问题。根据微电网并网接入点的电压、电流、功率等测量数据,构建循环神经网络等效模型,将接入点电压和电流分别作为神经网络的输入和输出,基于微电网和配电网的交换功率表征模型的准确性;并构建包含各种分布式发电系统的微电网系统,完成并网仿真实验;通过对比搭建的仿真模型和神经网络等效模型的输出动态特性,证明基于神经网络的微电网并网等效模型的准确性和适用性。 展开更多
关键词 动态等效建模 微电网 循环人工神经网络 分布式发电
在线阅读 下载PDF
气动人工肌肉主动悬架系统的可变自整定离散PID控制 被引量:4
18
作者 沈伟 施光林 《系统仿真学报》 EI CAS CSCD 北大核心 2005年第9期2226-2230,共5页
构建以气动人工肌肉为新型执行器的车用主动悬架系统实验平台,为简化的基于1/4悬架模型的主动悬架系统设计了基于DRNN神经网络的可变自整定离散PID控制算法,分析了可变自整定离散PID算法的控制性能,为提高气动人工肌肉主动悬架系统的减... 构建以气动人工肌肉为新型执行器的车用主动悬架系统实验平台,为简化的基于1/4悬架模型的主动悬架系统设计了基于DRNN神经网络的可变自整定离散PID控制算法,分析了可变自整定离散PID算法的控制性能,为提高气动人工肌肉主动悬架系统的减震性能提供理论依据。 展开更多
关键词 主动悬架 气动人工肌肉 PID 可变自整定算法 drnn神经网络
在线阅读 下载PDF
含分布时滞递归神经网络的一般衰减同步 被引量:5
19
作者 艾合麦提·麦麦提阿吉 李洪利 《应用数学和力学》 CSCD 北大核心 2019年第11期1204-1213,共10页
对具有分布时滞的递归神经网络模型进行了研究,并通过构造适当的Lyapunov-Krasovskii函数和非线性控制函数,采用不等式估计方法,得到了所研究模型一般衰减同步的充分条件.最后给出了一个例子,进一步说明了所得结论的正确性.
关键词 递归神经网络 一般衰减同步 分布时滞
在线阅读 下载PDF
基于改进循环神经网络的配电网超短期功率预测方法 被引量:19
20
作者 赵振兵 强一凡 +4 位作者 李信 肖娜 李坚 席嫣娜 石颖 《电力科学与技术学报》 CAS 北大核心 2022年第5期144-154,共11页
针对传统单向循环神经网络在配电网超短期功率预测领域存在的预测曲线失形、模型过拟合现象以及预测精度不高和收敛速度慢等问题,提出基于小波变换和自注意力机制的双向循环神经网络改进模型。通过双向结构学习功率数据的前向和逆向规... 针对传统单向循环神经网络在配电网超短期功率预测领域存在的预测曲线失形、模型过拟合现象以及预测精度不高和收敛速度慢等问题,提出基于小波变换和自注意力机制的双向循环神经网络改进模型。通过双向结构学习功率数据的前向和逆向规律提高模型预测精度;通过小波变换分摊整体功率预测难度以及改善过拟合和加快模型收敛速度;通过自注意力机制把握模型隐藏层维度关系进一步提高预测精度。算例证明改进模型可以有效改善上述问题,改进模型与传统单向模型相比,在有功预测场景中,MAE提升了50.1%,MAPE提升了43.3%,RMSE提升了51.1%;在无功预测场景中,MAE提升了60.5%,MAPE提升了63.8%,RMSE提升了60.1%。 展开更多
关键词 配电网 功率预测 循环神经网络 小波变换 自注意力机制
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部