基于人类反馈的强化学习(reinforcement learning with human feedback,RLHF)作为当前大语言模型(large language models,LLMs)对齐的主流方法,其核心优化算法——近端策略优化(proximal policy optimization,PPO)却面临着显著的效率问...基于人类反馈的强化学习(reinforcement learning with human feedback,RLHF)作为当前大语言模型(large language models,LLMs)对齐的主流方法,其核心优化算法——近端策略优化(proximal policy optimization,PPO)却面临着显著的效率问题.PPO由生成、推理、训练3个相互关联的阶段组成,各个阶段有着不同的计算特性.然而,现有的RLHF并行框架采用相同并行策略顺序执行PPO的所有阶段,这导致以下2个问题:其一,生成阶段不能充分利用计算资源,进而影响整体效率;其二,阶段间严格串行执行,未能充分利用潜在并行性.针对上述问题,提出了一个新型RLHF并行框架——Pipe-RLHF.该框架能够自适应地根据各阶段的计算特征确定最优并行策略,突破现有阶段串行范式,采用异步PPO算法发掘阶段间的并行性.具体而言,创新性地提出了适用于PPO生成阶段的延迟批间流水线并行方法,显著提升了该阶段的计算资源利用率;再次,使用异步PPO解放阶段间的依赖关系,将阶段间并行应用到PPO的加速上;最后,针对PPO算法的整体优化,构建了分层并行策略空间,并提出了一套优化算法以实现该空间中的最优解搜索.通过在多个大语言模型上的性能评估实验表明,相较于现有方法,Pipe-RLHF最高可实现3.7倍的加速比,充分验证了该框架的有效性和优越性.展开更多
为平抑微源半桥变流器串联星型结构微电网HCSY-MG(half-bridge converter series Y-connection micro-grids)并网系统中微源出力的波动,保证各相直流侧电压之和相等,与并网电流三相平衡,提出1种基于改进近端策略优化PPO(proximal policy...为平抑微源半桥变流器串联星型结构微电网HCSY-MG(half-bridge converter series Y-connection micro-grids)并网系统中微源出力的波动,保证各相直流侧电压之和相等,与并网电流三相平衡,提出1种基于改进近端策略优化PPO(proximal policy optimization)的分布式混合储能系统HESS(hybrid energy storage system)充、放电优化控制策略。在考虑HCSY-MG系统并网电流与分布式HESS特性的条件下,确定影响并网电流的主要系统变量,以及HESS接入系统的最佳拓扑结构。然后结合串联系统的特点,将分布式HESS的充、放电问题转换为深度强化学习的Markov决策过程。同时针对PPO算法中熵损失权重难以确定的问题,提出1种改进的PPO算法,兼顾智能体的收敛性和探索性。最后以某新能源发电基地的典型运行数据为算例,验证所提控制策略的可行性和有效性。展开更多
文摘基于人类反馈的强化学习(reinforcement learning with human feedback,RLHF)作为当前大语言模型(large language models,LLMs)对齐的主流方法,其核心优化算法——近端策略优化(proximal policy optimization,PPO)却面临着显著的效率问题.PPO由生成、推理、训练3个相互关联的阶段组成,各个阶段有着不同的计算特性.然而,现有的RLHF并行框架采用相同并行策略顺序执行PPO的所有阶段,这导致以下2个问题:其一,生成阶段不能充分利用计算资源,进而影响整体效率;其二,阶段间严格串行执行,未能充分利用潜在并行性.针对上述问题,提出了一个新型RLHF并行框架——Pipe-RLHF.该框架能够自适应地根据各阶段的计算特征确定最优并行策略,突破现有阶段串行范式,采用异步PPO算法发掘阶段间的并行性.具体而言,创新性地提出了适用于PPO生成阶段的延迟批间流水线并行方法,显著提升了该阶段的计算资源利用率;再次,使用异步PPO解放阶段间的依赖关系,将阶段间并行应用到PPO的加速上;最后,针对PPO算法的整体优化,构建了分层并行策略空间,并提出了一套优化算法以实现该空间中的最优解搜索.通过在多个大语言模型上的性能评估实验表明,相较于现有方法,Pipe-RLHF最高可实现3.7倍的加速比,充分验证了该框架的有效性和优越性.
文摘为平抑微源半桥变流器串联星型结构微电网HCSY-MG(half-bridge converter series Y-connection micro-grids)并网系统中微源出力的波动,保证各相直流侧电压之和相等,与并网电流三相平衡,提出1种基于改进近端策略优化PPO(proximal policy optimization)的分布式混合储能系统HESS(hybrid energy storage system)充、放电优化控制策略。在考虑HCSY-MG系统并网电流与分布式HESS特性的条件下,确定影响并网电流的主要系统变量,以及HESS接入系统的最佳拓扑结构。然后结合串联系统的特点,将分布式HESS的充、放电问题转换为深度强化学习的Markov决策过程。同时针对PPO算法中熵损失权重难以确定的问题,提出1种改进的PPO算法,兼顾智能体的收敛性和探索性。最后以某新能源发电基地的典型运行数据为算例,验证所提控制策略的可行性和有效性。