The control synthesis for switched systems is extended to distributed parameter switched systems in Hilbert space. Based on semigroup and operator theory, by means of multiple Lyapunov method incorporated average dwel...The control synthesis for switched systems is extended to distributed parameter switched systems in Hilbert space. Based on semigroup and operator theory, by means of multiple Lyapunov method incorporated average dwell time approach, sufficient con- ditions are derived in terms of linear operator inequalities frame- work for distributed parameter switched systems. Being applied to one dimensional heat propagation switched systems, these lin- ear operator inequalities are reduced to linear matrix inequalities subsequently. In particular, the state feedback gain matrices and the switching law are designed, and the state decay estimate is explicitly given whose decay coefficient completely depends on the system's parameter and the boundary condition. Finally, two numerical examples are given to illustrate the proposed method.展开更多
基金supported by the National Natural Science Foundation of China(6127311961374038+2 种基金6147307961473083)the Natural Science Foundation of Shanxi Province(2012011002-2)
文摘The control synthesis for switched systems is extended to distributed parameter switched systems in Hilbert space. Based on semigroup and operator theory, by means of multiple Lyapunov method incorporated average dwell time approach, sufficient con- ditions are derived in terms of linear operator inequalities frame- work for distributed parameter switched systems. Being applied to one dimensional heat propagation switched systems, these lin- ear operator inequalities are reduced to linear matrix inequalities subsequently. In particular, the state feedback gain matrices and the switching law are designed, and the state decay estimate is explicitly given whose decay coefficient completely depends on the system's parameter and the boundary condition. Finally, two numerical examples are given to illustrate the proposed method.