At present, the demand for perimeter security system is in-creasing greatly, especially for such system based on distribut-ed optical fiber sensing. This paper proposes a perimeter se-curity monitoring system based on...At present, the demand for perimeter security system is in-creasing greatly, especially for such system based on distribut-ed optical fiber sensing. This paper proposes a perimeter se-curity monitoring system based on phase-sensitive coherentoptical time domain reflectometry(Ф-COTDR) with the practi-cal pattern recognition function. We use fast Fourier trans-form(FFT) to exact features from intrusion events and a multi-class classification algorithm derived from support vector ma-chine(SVM) to work as a pattern recognition technique. Fivedifferent types of events are classified by using a classifica-tion algorithm based on SVM through a three-dimensional fea-ture vector. Moreover, the identification results of the patternrecognition system show that an identification accurate rate of92.62% on average can be achieved.展开更多
Probability of detection(POD)graphics allow for a change from qualitative to quantitative assessment for every damage detection system,and as such it is a main request for conventional non-destructive testing(NDT)tech...Probability of detection(POD)graphics allow for a change from qualitative to quantitative assessment for every damage detection system,and as such it is a main request for conventional non-destructive testing(NDT)techniques.Its availability can greatly help towards the industrialization of the corresponding Structural health monitoring(SHM)system.But having in mind that for SHM systems the sensors are at fixed positions,and the location of a potential damage would change its detectability.Consequently robust simulation tools are required to obtain the model assisted probability of detection(MAPOD)which is needed to validate the SHM system.This tool may also help for the optimization of the sensor distribution,and finally will allow a probabilistic risk management.INDEUS,simulation of ultrasonic waves SHM system,was a main milestone in this direction.This article deals with the simulation tools for a strain based SHM system,using fiber optic sensors(FOS).FOS are essentially strain/temperature sensors,either with multi-point or with distributed sensing.The simulation tool includes the finite element model(FEM)for the original and damaged structure,and algorithms to compare the strain data at the pre-established sensors locations,and from this comparison to extract information about damage occurrence and location.The study has been applied to the structure of an all-composite unmanned aircraft vehicle(UAV)now under construction,designed at Universidad Politecnica de Madrid for the inspection of electrical utilities networks.Distributed sensing optical fibers were internally bonded at the fuselage and wing.Routine inspection is planned to be done with the aircraft at the test bench by imposing known loads.From the acquired strain data,damage occurrence may be calculated as slight deviations from the baselines.This is a fast inspection procedure without requiring trained specialists,and it would allow for detection of hidden damages.Simulation indicates that stringer partial debondings are detected before they become critical,while small delaminations as those produced by barely visible impact damages would require a prohibited number of sensing lines.These simulation tools may easily be applied to any other complex structure,just by changing the FEM models.From these results it is shown how a fiber optic based SHM system may be used as a reliable damage detection procedure.展开更多
Multicore fiber(MCF)which contains more than one core in a single fiber cladding has attracted ever increasing attention for application in optical sensing systems owing to its unique capability of independent light t...Multicore fiber(MCF)which contains more than one core in a single fiber cladding has attracted ever increasing attention for application in optical sensing systems owing to its unique capability of independent light transmission in multiple spatial channels.Different from the situation in standard single mode fiber(SMF),the fiber bending gives rise to tangential strain in off-center cores,and this unique feature has been employed for directional bending and shape sensing,where strain measurement is achieved by using either fiber Bragg gratings(FBGs),optical frequency-domain reflectometry(OFDR)or Brillouin distributed sensing technique.On the other hand,the parallel spatial cores enable space-division multiplexed(SDM)system configuration that allows for the multiplexing of multiple distributed sensing techniques.As a result,multi-parameter sensing or performance enhanced sensing can be achieved by using MCF.In this paper,we review the research progress in MCF based distributed fiber sensors.Brief introductions of MCF and the multiplexing/de-multiplexing methods are presented.The bending sensitivity of off-center cores is analyzed.Curvature and shape sensing,as well as various SDM distributed sensing using MCF are summarized,and the working principles of diverse MCF sensors are discussed.Finally,we present the challenges and prospects of MCF for distributed sensing applications.展开更多
文摘At present, the demand for perimeter security system is in-creasing greatly, especially for such system based on distribut-ed optical fiber sensing. This paper proposes a perimeter se-curity monitoring system based on phase-sensitive coherentoptical time domain reflectometry(Ф-COTDR) with the practi-cal pattern recognition function. We use fast Fourier trans-form(FFT) to exact features from intrusion events and a multi-class classification algorithm derived from support vector ma-chine(SVM) to work as a pattern recognition technique. Fivedifferent types of events are classified by using a classifica-tion algorithm based on SVM through a three-dimensional fea-ture vector. Moreover, the identification results of the patternrecognition system show that an identification accurate rate of92.62% on average can be achieved.
基金supported by the project TRA2014-58263-C2-2-Rfunded by the National Research program of Spain
文摘Probability of detection(POD)graphics allow for a change from qualitative to quantitative assessment for every damage detection system,and as such it is a main request for conventional non-destructive testing(NDT)techniques.Its availability can greatly help towards the industrialization of the corresponding Structural health monitoring(SHM)system.But having in mind that for SHM systems the sensors are at fixed positions,and the location of a potential damage would change its detectability.Consequently robust simulation tools are required to obtain the model assisted probability of detection(MAPOD)which is needed to validate the SHM system.This tool may also help for the optimization of the sensor distribution,and finally will allow a probabilistic risk management.INDEUS,simulation of ultrasonic waves SHM system,was a main milestone in this direction.This article deals with the simulation tools for a strain based SHM system,using fiber optic sensors(FOS).FOS are essentially strain/temperature sensors,either with multi-point or with distributed sensing.The simulation tool includes the finite element model(FEM)for the original and damaged structure,and algorithms to compare the strain data at the pre-established sensors locations,and from this comparison to extract information about damage occurrence and location.The study has been applied to the structure of an all-composite unmanned aircraft vehicle(UAV)now under construction,designed at Universidad Politecnica de Madrid for the inspection of electrical utilities networks.Distributed sensing optical fibers were internally bonded at the fuselage and wing.Routine inspection is planned to be done with the aircraft at the test bench by imposing known loads.From the acquired strain data,damage occurrence may be calculated as slight deviations from the baselines.This is a fast inspection procedure without requiring trained specialists,and it would allow for detection of hidden damages.Simulation indicates that stringer partial debondings are detected before they become critical,while small delaminations as those produced by barely visible impact damages would require a prohibited number of sensing lines.These simulation tools may easily be applied to any other complex structure,just by changing the FEM models.From these results it is shown how a fiber optic based SHM system may be used as a reliable damage detection procedure.
文摘Multicore fiber(MCF)which contains more than one core in a single fiber cladding has attracted ever increasing attention for application in optical sensing systems owing to its unique capability of independent light transmission in multiple spatial channels.Different from the situation in standard single mode fiber(SMF),the fiber bending gives rise to tangential strain in off-center cores,and this unique feature has been employed for directional bending and shape sensing,where strain measurement is achieved by using either fiber Bragg gratings(FBGs),optical frequency-domain reflectometry(OFDR)or Brillouin distributed sensing technique.On the other hand,the parallel spatial cores enable space-division multiplexed(SDM)system configuration that allows for the multiplexing of multiple distributed sensing techniques.As a result,multi-parameter sensing or performance enhanced sensing can be achieved by using MCF.In this paper,we review the research progress in MCF based distributed fiber sensors.Brief introductions of MCF and the multiplexing/de-multiplexing methods are presented.The bending sensitivity of off-center cores is analyzed.Curvature and shape sensing,as well as various SDM distributed sensing using MCF are summarized,and the working principles of diverse MCF sensors are discussed.Finally,we present the challenges and prospects of MCF for distributed sensing applications.