A dynamic multi-beam resource allocation algorithm for large low Earth orbit(LEO)constellation based on on-board distributed computing is proposed in this paper.The allocation is a combinatorial optimization process u...A dynamic multi-beam resource allocation algorithm for large low Earth orbit(LEO)constellation based on on-board distributed computing is proposed in this paper.The allocation is a combinatorial optimization process under a series of complex constraints,which is important for enhancing the matching between resources and requirements.A complex algorithm is not available because that the LEO on-board resources is limi-ted.The proposed genetic algorithm(GA)based on two-dimen-sional individual model and uncorrelated single paternal inheri-tance method is designed to support distributed computation to enhance the feasibility of on-board application.A distributed system composed of eight embedded devices is built to verify the algorithm.A typical scenario is built in the system to evalu-ate the resource allocation process,algorithm mathematical model,trigger strategy,and distributed computation architec-ture.According to the simulation and measurement results,the proposed algorithm can provide an allocation result for more than 1500 tasks in 14 s and the success rate is more than 91%in a typical scene.The response time is decreased by 40%com-pared with the conditional GA.展开更多
The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor...The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.展开更多
How to make use of limited onboard resources for complex and heavy space tasks has attracted much attention.With the continuous improvement on satellite payload capacity and the increasing complexity of observation re...How to make use of limited onboard resources for complex and heavy space tasks has attracted much attention.With the continuous improvement on satellite payload capacity and the increasing complexity of observation requirements,the importance of satellite autonomous task scheduling research has gradually increased.This article first gives the problem description and mathematical model for the satellite autonomous task scheduling and then follows the steps of"satellite autonomous task scheduling,centralized autonomous collaborative task scheduling architecture,distributed autonomous collaborative task scheduling architecture,solution algorithm".Finally,facing the complex and changeable environment situation,this article proposes the future direction of satellite autonomous task scheduling.展开更多
The emergent task is a kind of uncertain event that satellite systems often encounter in the application process.In this paper,the multi-satellite distributed coordinating and scheduling problem considering emergent t...The emergent task is a kind of uncertain event that satellite systems often encounter in the application process.In this paper,the multi-satellite distributed coordinating and scheduling problem considering emergent tasks is studied.Due to the limitation of onboard computational resources and time,common online onboard rescheduling methods for such problems usually adopt simple greedy methods,sacrificing the solution quality to deliver timely solutions.To better solve the problem,a new multi-satellite onboard scheduling and coordinating framework based on multi-solution integration is proposed.This method uses high computational power on the ground and generates multiple solutions,changing the complex onboard rescheduling problem to a solution selection problem.With this method,it is possible that little time is used to generate a solution that is as good as the solutions on the ground.We further propose several multi-satellite coordination methods based on the multi-agent Markov decision process(MMDP)and mixed-integer programming(MIP).These methods enable the satellite to make independent decisions and produce high-quality solutions.Compared with the traditional centralized scheduling method,the proposed distributed method reduces the cost of satellite communication and increases the response speed for emergent tasks.Extensive experiments show that the proposed multi-solution integration framework and the distributed coordinating strategies are efficient and effective for onboard scheduling considering emergent tasks.展开更多
Driven by the improvement of the smart grid,the active distribution network(ADN)has attracted much attention due to its characteristic of active management.By making full use of electricity price signals for optimal s...Driven by the improvement of the smart grid,the active distribution network(ADN)has attracted much attention due to its characteristic of active management.By making full use of electricity price signals for optimal scheduling,the total cost of the ADN can be reduced.However,the optimal dayahead scheduling problem is challenging since the future electricity price is unknown.Moreover,in ADN,some schedulable variables are continuous while some schedulable variables are discrete,which increases the difficulty of determining the optimal scheduling scheme.In this paper,the day-ahead scheduling problem of the ADN is formulated as a Markov decision process(MDP)with continuous-discrete hybrid action space.Then,an algorithm based on multi-agent hybrid reinforcement learning(HRL)is proposed to obtain the optimal scheduling scheme.The proposed algorithm adopts the structure of centralized training and decentralized execution,and different methods are applied to determine the selection policy of continuous scheduling variables and discrete scheduling variables.The simulation experiment results demonstrate the effectiveness of the algorithm.展开更多
基金This work was supported by the National Key Research and Development Program of China(2021YFB2900603)the National Natural Science Foundation of China(61831008).
文摘A dynamic multi-beam resource allocation algorithm for large low Earth orbit(LEO)constellation based on on-board distributed computing is proposed in this paper.The allocation is a combinatorial optimization process under a series of complex constraints,which is important for enhancing the matching between resources and requirements.A complex algorithm is not available because that the LEO on-board resources is limi-ted.The proposed genetic algorithm(GA)based on two-dimen-sional individual model and uncorrelated single paternal inheri-tance method is designed to support distributed computation to enhance the feasibility of on-board application.A distributed system composed of eight embedded devices is built to verify the algorithm.A typical scenario is built in the system to evalu-ate the resource allocation process,algorithm mathematical model,trigger strategy,and distributed computation architec-ture.According to the simulation and measurement results,the proposed algorithm can provide an allocation result for more than 1500 tasks in 14 s and the success rate is more than 91%in a typical scene.The response time is decreased by 40%com-pared with the conditional GA.
基金Projects(61573144,61773165,61673175,61174040)supported by the National Natural Science Foundation of ChinaProject(222201717006)supported by the Fundamental Research Funds for the Central Universities,China
文摘The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.
基金supported by the National Natural Science Foundation of China(72001212,61773120)Hunan Postgraduate Research Innovation Project(CX20210031)+1 种基金the Foundation for the Author of National Excellent Doctoral Dissertation of China(2014-92)the Innovation Team of Guangdong Provincial Department of Education(2018KCXTD031)。
文摘How to make use of limited onboard resources for complex and heavy space tasks has attracted much attention.With the continuous improvement on satellite payload capacity and the increasing complexity of observation requirements,the importance of satellite autonomous task scheduling research has gradually increased.This article first gives the problem description and mathematical model for the satellite autonomous task scheduling and then follows the steps of"satellite autonomous task scheduling,centralized autonomous collaborative task scheduling architecture,distributed autonomous collaborative task scheduling architecture,solution algorithm".Finally,facing the complex and changeable environment situation,this article proposes the future direction of satellite autonomous task scheduling.
基金supported by the National Natural Science Foundation of China(72001212,71701204,71801218)the China Hunan Postgraduate Research Innovating Project(CX2018B020)。
文摘The emergent task is a kind of uncertain event that satellite systems often encounter in the application process.In this paper,the multi-satellite distributed coordinating and scheduling problem considering emergent tasks is studied.Due to the limitation of onboard computational resources and time,common online onboard rescheduling methods for such problems usually adopt simple greedy methods,sacrificing the solution quality to deliver timely solutions.To better solve the problem,a new multi-satellite onboard scheduling and coordinating framework based on multi-solution integration is proposed.This method uses high computational power on the ground and generates multiple solutions,changing the complex onboard rescheduling problem to a solution selection problem.With this method,it is possible that little time is used to generate a solution that is as good as the solutions on the ground.We further propose several multi-satellite coordination methods based on the multi-agent Markov decision process(MMDP)and mixed-integer programming(MIP).These methods enable the satellite to make independent decisions and produce high-quality solutions.Compared with the traditional centralized scheduling method,the proposed distributed method reduces the cost of satellite communication and increases the response speed for emergent tasks.Extensive experiments show that the proposed multi-solution integration framework and the distributed coordinating strategies are efficient and effective for onboard scheduling considering emergent tasks.
基金This work was supported by the National Key R&D Program of China(2018AAA0101400)the National Natural Science Foundation of China(62173251,61921004,U1713209)the Natural Science Foundation of Jiangsu Province of China(BK20202006).
文摘Driven by the improvement of the smart grid,the active distribution network(ADN)has attracted much attention due to its characteristic of active management.By making full use of electricity price signals for optimal scheduling,the total cost of the ADN can be reduced.However,the optimal dayahead scheduling problem is challenging since the future electricity price is unknown.Moreover,in ADN,some schedulable variables are continuous while some schedulable variables are discrete,which increases the difficulty of determining the optimal scheduling scheme.In this paper,the day-ahead scheduling problem of the ADN is formulated as a Markov decision process(MDP)with continuous-discrete hybrid action space.Then,an algorithm based on multi-agent hybrid reinforcement learning(HRL)is proposed to obtain the optimal scheduling scheme.The proposed algorithm adopts the structure of centralized training and decentralized execution,and different methods are applied to determine the selection policy of continuous scheduling variables and discrete scheduling variables.The simulation experiment results demonstrate the effectiveness of the algorithm.