We consider first order quasilinear hyperbolic systems with vertical characteristics. It was shown in [4] that such systems can be exactly controllable with the help of internal controls applied to the equations corr...We consider first order quasilinear hyperbolic systems with vertical characteristics. It was shown in [4] that such systems can be exactly controllable with the help of internal controls applied to the equations corresponding to zero eigenvalues. However, it is possible that, for physical or engineering reasons, we can not put any control on the equations corresponding to zero eigenvalues. In this paper, we will establish the exact controllability only by means of physically meaningfnl internal controls applied to the equations corresponding to non-zero eigenvalues. We also show the exact controllability for a very simplified model by means of switching controls.展开更多
A distibuted optimal local double loop(DOLDL) network is presented. Emphasis is laid on the topology and distributed routing algorithms for the DOLDL. On the basis of building an abstract model, a set of definitions a...A distibuted optimal local double loop(DOLDL) network is presented. Emphasis is laid on the topology and distributed routing algorithms for the DOLDL. On the basis of building an abstract model, a set of definitions and theorems are described and proved. An algorithm which can optimize the double loop networks is presented. The optimal values of the topologic parameters for the DOLDL have been obtained by the algorithm, and these numerical results are analyzed. The study shows that the bounds of the optimal diameter (d) and average hop distance (a) for this class of networks are [square-root 3N -2] less-than-or-equal-to d less-than-or-equal-to [square-root 3N+1] and (5N/9(N-1)) (square-root 3N-1.8) < a < (5N/9 (N-1)). (square-root 3N - 0.23), respectively (N is the number of nodes in the network. (3 less-than-or-equal-to N less-than-or-equal-to 10(4)). A class of the distributed routing algorithms for the DOLDL and the implementation procedure of an adaptive fault-tolerant algorithm are proposed. The correctness of the algorithm has been also verified by simulating.展开更多
Multiplexing multiple yet distinct functionalities in one single device is highly desired for modern integration optics,but conventional devices are usually of bulky sizes and/or low efficiencies.While recently propos...Multiplexing multiple yet distinct functionalities in one single device is highly desired for modern integration optics,but conventional devices are usually of bulky sizes and/or low efficiencies.While recently proposed metasurfaces can be ultrathin and highly efficient,functionalities multiplexed by metadevices so far are typically restricted to two,dictated by the number of independent polarization states of the incident light.Here,we propose a generic approach to design metadevices exhibiting wave-control functionalities far exceeding two,based on coherent wave interferences continuously tuned by varying the incident polarization.After designing a series of building-block metaatoms with optical properties experimentally characterized,we construct two metadevices based on the proposed strategy and experimentally demonstrate their polarization-tuned multifunctionalities at the wavelength of 1550 nm.Specifically,upon continuously modulating the incident polarization along different paths on the Poincare’s sphere,we show that the first device can generate two spatially non-overlapping vortex beams with strengths continuously tuned,while the second device can generate a vectorial vortex beam carrying continuously-tuned polarization distribution and/or orbital angular momentum.Our proposed strategy significantly expands the wave-control functionalities equipped with a single optical device,which may stimulate numerous applications in integration optics.展开更多
Measurement-device-independent quantum key distribution (MDI-QKD) is proven to be immune to all the de- tector side channel attacks. With two symmetric quantum channels, the maximal transmission distance can be doub...Measurement-device-independent quantum key distribution (MDI-QKD) is proven to be immune to all the de- tector side channel attacks. With two symmetric quantum channels, the maximal transmission distance can be doubled when compared with the prepare-and-measure QKD. An interesting question is whether the transmission distance can be extended further. In this work, we consider the contributions of the two-way local operations and classical communications to the key generation rate and transmission distance of the MDI-QKD. Our numerical results show that the secure transmission distances are increased by about 12kin and 8 km when the 1 13 and the 2 B steps are implemented, respectively.展开更多
The perturbation method is used to study the localization of electric field distribution and the effective nonlinear response of graded composites under an external alternating-current(AC) and direct-current(DC) e...The perturbation method is used to study the localization of electric field distribution and the effective nonlinear response of graded composites under an external alternating-current(AC) and direct-current(DC) electric field E app = E 0(1 + sin ωt).The dielectric profile of the cylindrical inclusions is modeled by function ε i(r) = C k r k(r ≤ a),where r is the radius of the cylindrical inclusion,and C k,k,a are parameters.In the dilute limit,the local potentials and the effective nonlinear responses at all harmonics are derived.Meanwhile,the general effective nonlinear responses are also derived and compared with the effective nonlinear responses at harmonics under the AC and DC external field.It is found that the effective nonlinear AC and DC responses at harmonics can be calculated by those of the general effective nonlinear of the graded composites under the external DC electric field.Moreover,the obtained local electrical fields show that the electrical field distribution in the cylindrical inclusions is controllable,and the maximum of the electric field inside the cylinder is at its center.展开更多
The velocity of a particle detector in granular flow can be regarded as the combination of rolling and sliding velocities.The study of the contribution of rolling velocity and sliding velocity provides a new explanati...The velocity of a particle detector in granular flow can be regarded as the combination of rolling and sliding velocities.The study of the contribution of rolling velocity and sliding velocity provides a new explanation to the relative motion between the detector and the local granular flow.In this study,a spherical detector using embedded inertial navigation technology is placed in the chute granular flow to study the movement of the detector relative to the granular flow.It is shown by particle image velocimetry(PIV)that the velocity of chute granular flow conforms to Silbert’s formula.And the velocity of the detector is greater than that of the granular flow around it.By decomposing the velocity into sliding and rolling velocity,it is indicated that the movement of the detector relative to the granular flow is mainly caused by rolling.The rolling detail shown by DEM simulation leads to two potential mechanisms based on the position and drive of the detector.展开更多
文摘We consider first order quasilinear hyperbolic systems with vertical characteristics. It was shown in [4] that such systems can be exactly controllable with the help of internal controls applied to the equations corresponding to zero eigenvalues. However, it is possible that, for physical or engineering reasons, we can not put any control on the equations corresponding to zero eigenvalues. In this paper, we will establish the exact controllability only by means of physically meaningfnl internal controls applied to the equations corresponding to non-zero eigenvalues. We also show the exact controllability for a very simplified model by means of switching controls.
文摘A distibuted optimal local double loop(DOLDL) network is presented. Emphasis is laid on the topology and distributed routing algorithms for the DOLDL. On the basis of building an abstract model, a set of definitions and theorems are described and proved. An algorithm which can optimize the double loop networks is presented. The optimal values of the topologic parameters for the DOLDL have been obtained by the algorithm, and these numerical results are analyzed. The study shows that the bounds of the optimal diameter (d) and average hop distance (a) for this class of networks are [square-root 3N -2] less-than-or-equal-to d less-than-or-equal-to [square-root 3N+1] and (5N/9(N-1)) (square-root 3N-1.8) < a < (5N/9 (N-1)). (square-root 3N - 0.23), respectively (N is the number of nodes in the network. (3 less-than-or-equal-to N less-than-or-equal-to 10(4)). A class of the distributed routing algorithms for the DOLDL and the implementation procedure of an adaptive fault-tolerant algorithm are proposed. The correctness of the algorithm has been also verified by simulating.
基金National Key Research and Development Program of China(Grant No.2022YFA1404701)National Natural Science Foundation of China(Grant Nos.12221004,62192771)Natural Science Foundation of Shanghai(Grant Nos.20JC141460,23DZ2260100)。
文摘Multiplexing multiple yet distinct functionalities in one single device is highly desired for modern integration optics,but conventional devices are usually of bulky sizes and/or low efficiencies.While recently proposed metasurfaces can be ultrathin and highly efficient,functionalities multiplexed by metadevices so far are typically restricted to two,dictated by the number of independent polarization states of the incident light.Here,we propose a generic approach to design metadevices exhibiting wave-control functionalities far exceeding two,based on coherent wave interferences continuously tuned by varying the incident polarization.After designing a series of building-block metaatoms with optical properties experimentally characterized,we construct two metadevices based on the proposed strategy and experimentally demonstrate their polarization-tuned multifunctionalities at the wavelength of 1550 nm.Specifically,upon continuously modulating the incident polarization along different paths on the Poincare’s sphere,we show that the first device can generate two spatially non-overlapping vortex beams with strengths continuously tuned,while the second device can generate a vectorial vortex beam carrying continuously-tuned polarization distribution and/or orbital angular momentum.Our proposed strategy significantly expands the wave-control functionalities equipped with a single optical device,which may stimulate numerous applications in integration optics.
基金Supported by the National Natural Science Foundation of China under Grant No 61378011the Program for Science and Technology Innovation Research Team in University of Henan Province under Grant No 13IRTSTHN020
文摘Measurement-device-independent quantum key distribution (MDI-QKD) is proven to be immune to all the de- tector side channel attacks. With two symmetric quantum channels, the maximal transmission distance can be doubled when compared with the prepare-and-measure QKD. An interesting question is whether the transmission distance can be extended further. In this work, we consider the contributions of the two-way local operations and classical communications to the key generation rate and transmission distance of the MDI-QKD. Our numerical results show that the secure transmission distances are increased by about 12kin and 8 km when the 1 13 and the 2 B steps are implemented, respectively.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.40876094 and JQ10974106)the National High Technology Research and Development Program of China(Grant Nos.2009AA09Z102 and 2008AA09A403)+1 种基金the Excellent Youth Fundation of Shandong Scientific Committee,China(Grant No.JQ201018)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2009AZ002)
文摘The perturbation method is used to study the localization of electric field distribution and the effective nonlinear response of graded composites under an external alternating-current(AC) and direct-current(DC) electric field E app = E 0(1 + sin ωt).The dielectric profile of the cylindrical inclusions is modeled by function ε i(r) = C k r k(r ≤ a),where r is the radius of the cylindrical inclusion,and C k,k,a are parameters.In the dilute limit,the local potentials and the effective nonlinear responses at all harmonics are derived.Meanwhile,the general effective nonlinear responses are also derived and compared with the effective nonlinear responses at harmonics under the AC and DC external field.It is found that the effective nonlinear AC and DC responses at harmonics can be calculated by those of the general effective nonlinear of the graded composites under the external DC electric field.Moreover,the obtained local electrical fields show that the electrical field distribution in the cylindrical inclusions is controllable,and the maximum of the electric field inside the cylinder is at its center.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11972212,12072200,and 12002213)。
文摘The velocity of a particle detector in granular flow can be regarded as the combination of rolling and sliding velocities.The study of the contribution of rolling velocity and sliding velocity provides a new explanation to the relative motion between the detector and the local granular flow.In this study,a spherical detector using embedded inertial navigation technology is placed in the chute granular flow to study the movement of the detector relative to the granular flow.It is shown by particle image velocimetry(PIV)that the velocity of chute granular flow conforms to Silbert’s formula.And the velocity of the detector is greater than that of the granular flow around it.By decomposing the velocity into sliding and rolling velocity,it is indicated that the movement of the detector relative to the granular flow is mainly caused by rolling.The rolling detail shown by DEM simulation leads to two potential mechanisms based on the position and drive of the detector.