Predictions of extreme near-field blast wave for cylindrical charge is crucial for designing sympathetic detonation protection structures,yet the quantitative analysis of detonation products and shock wave field are s...Predictions of extreme near-field blast wave for cylindrical charge is crucial for designing sympathetic detonation protection structures,yet the quantitative analysis of detonation products and shock wave field are still insufficient.The present work conducted experiments and numerical simulations of nearfield explosion for kilogram scale cylindrical charge,and investigated the propagation and spatial distribution characteristics of incident and reflected blast waves.The results show that near-field reflected overpressure exhibits multi-peak structures,which are primarily governed by reflections of detonation products and shock wave.The reflected peak overpressure dominated by detonation products shows higher sensitivity to scaled distance.Meanwhile,the Rayleigh-Taylor instability(RTI)effect induces the evolutions of detonation products and shock wave interface from smooth to random microjets,increasing dispersion of secondary re flected peak overpressure.In free-field explosion,the incident peak overpressure exhibits a dual-peak structure,governed by the shock wave front and detonation products flowing past the gauge points.The incident peak overpressure dominated by detonation products is sensitive to orientations due to the charge structures.As the aspect ratio of charge increases from 0.6 to 8,the dominant radial azimuth angle region expands from 60°-90°to 30°-90°.An empirical model was developed to predict the spatial distributions of incident peak loads at arbitrary orientations for cylindrical charge with 0.6≤L/D≤8.0 and 0.06 m·kg^(-1/3)展开更多
The boundary between the near and far fields is generally defined as the distance from the vibration source beyond which ground vibrations are mainly dominated by Rayleigh waves. It is closely related to the type of v...The boundary between the near and far fields is generally defined as the distance from the vibration source beyond which ground vibrations are mainly dominated by Rayleigh waves. It is closely related to the type of vibration source and the soil properties. Based on the solutions of the Lamb's problem, the boundary at the surface between the near and far fields of ground vibration was investigated for a harmonic vertical concentrated load and an infinite line load at the surface of a visco-elastic half-space. Particularly, the variation of the boundary with the material damping was investigated for both cases. The results indicate that the material damping slightly contributes to the attenuation of vibrations in the near-source region, but significantly reduces the vibrations in the region that is at some distance away from the source. When taking the material damping into consideration, the boundary between the near and far fields tends to move towards the vibration source. Compared with the vibrations caused by a concentrated load, the vibrations induced by an infinite line load can affect a larger range of the surrounding environment, and they attenuate more slowly. This means the boundary between the near field and far field should move fitrther away from the source. Finally, the boundaries are defined in terms of R-wave length (2R) and Poisson ratio of the ground (o). For the case of a point load, the boundary is located at the distance of (5.0-6.0)2R for v≤0.30 and at the distance of (2.0--3.0)2R for v≥0.35. For the case of an infinite line load, the boundary is located at the distance (5.5-6.5)2rt for v≤0.30 and at the distance (2.5--3.5)2R for v≥0.35.展开更多
The analytical method based on "Hertz theory on normal contact of elastic solids" and the numerical method based on finite element method (FEM) calculating the contact stress of face-gear drive with spur inv...The analytical method based on "Hertz theory on normal contact of elastic solids" and the numerical method based on finite element method (FEM) calculating the contact stress of face-gear drive with spur involute pinion were introduced, and their relative errors are below 10%, except edge contact, which turns out that these two methods can compute contact stress of face-gear drive correctly and effectively. An agreement of the localized bearing contact stress is gotten for these two methods, making sure that the calculation results of FEM are reliable. The loaded meshing simulations of multi-tooth FEM model were developed, and the determination of the transmission error and the maximal load distribution factor of face-gear drive under torques were given. A formula for the maximal load distribution factor was proposed. By introducing the maximal load distribution factor in multi-tooth contact zone, a method for calculating the maximal contact stress in multi-tooth contact can be given. Compared to FEM, the results of these formulae are proved to be reliable, and the relative errors are below 10%.展开更多
Cycloid speed reducers are widely used in many industrial areas due to the advantages of compact size, high reduction ratio and high stiffness. However, currently, there are not many analytical models for the mesh sti...Cycloid speed reducers are widely used in many industrial areas due to the advantages of compact size, high reduction ratio and high stiffness. However, currently, there are not many analytical models for the mesh stiffness calculation, which is a crucial parameter for the high-fidelity gear dynamic model. This is partially due to the difficulty of backlash determination and the complexity of multi-tooth contact deformation during the meshing process. In this paper, a new method to calculate the mesh stiffness is proposed including the effects of tooth profile modification and eccentricity error. The time-varying mesh parameters and load distribution of cycloid-pin gear pair are determined based on the unloaded tooth contact analysis (TCA) and the nonlinear Hertzian contact theory, allowing accurate calculations of the contact stiffness of single tooth pair and the torsional stiffness of multi-tooth pairs. A detailed parametric study is presented to demonstrate the influences of tooth profile modification, applied torque and eccentricity error on the torsional mesh stiffness, loaded transmission error, Hertzian contact stiffness and load sharing factor. This model can be applied to further study the lost motion and dynamic characteristics of cycloid speed reducer and assist the optimization of its precision, vibration and noise levels.展开更多
Reinforced concrete(RC) columns are widely used as supporting structures for high-piled wharfs.The study of damage model of a RC column due to underwater explosion is a critical issue to assess the wharfs antiknock se...Reinforced concrete(RC) columns are widely used as supporting structures for high-piled wharfs.The study of damage model of a RC column due to underwater explosion is a critical issue to assess the wharfs antiknock security.In this study,the dynamic response and damage model of circular RC columns subjected to underwater explosions were investigated by means of scaled-down experiment models.Experiments were carried out in a 10.0 m diameter tank with the water depth of 2.25 m,under different explosive quantities(0.025 kg-1.6 kg),stand-off distances(0.0 m-7.0 m),and detonation depths(0.25 m-2.0 m).The shock wave load and dynamic response of experiment models were measured by configuring sensors of pressure,acceleration,strain,and displacement.Then,the load distribution characteristics,time history of test data,and damage models related to present conditions were obtained and discussed.Three damage models,including bending failure,bending-shear failure and punching failure,were identified.In addition,the experie nce model of shock wave loads on the surface of a RC column was proposed for engineering application.展开更多
A retrofitted electro-hydraulic proportional system for hydraulic excavator was introduced firstly. According to the principle and characteristic of load independent flow distribution(LUDV) system,taking boom hydrauli...A retrofitted electro-hydraulic proportional system for hydraulic excavator was introduced firstly. According to the principle and characteristic of load independent flow distribution(LUDV) system,taking boom hydraulic system as an example and ignoring the leakage of hydraulic cylinder and the mass of oil in it,a force equilibrium equation and a continuous equation of hydraulic cylinder were set up. Based on the flow equation of electro-hydraulic proportional valve,the pressure passing through the valve and the difference of pressure were tested and analyzed. The results show that the difference of pressure does not change with load,and it approximates to 2.0 MPa. And then,assume the flow across the valve is directly proportional to spool displacement and is not influenced by load,a simplified model of electro-hydraulic system was put forward. At the same time,by analyzing the structure and load-bearing of boom instrument,and combining moment equivalent equation of manipulator with rotating law,the estimation methods and equations for such parameters as equivalent mass and bearing force of hydraulic cylinder were set up. Finally,the step response of flow of boom cylinder was tested when the electro-hydraulic proportional valve was controlled by the step current. Based on the experiment curve,the flow gain coefficient of valve is identified as 2.825×10-4 m3/(s·A) and the model is verified.展开更多
Taking the raceway roundness error into account,mechanical characteristics of cross roller bearings(CRBs)were investigated.A static analysis model of CRBs considering the raceway roundness error was established.Based ...Taking the raceway roundness error into account,mechanical characteristics of cross roller bearings(CRBs)were investigated.A static analysis model of CRBs considering the raceway roundness error was established.Based on this model,the rotational accuracy and load distribution of CRBs under constraints of geometry and external loads were derived.The fatigue life of CRBs with roundness error was calculated by applying Palmgren-Miner linear cumulative damage theory.The influence of inner and outer raceway roundness error on the performance of the CRBs,such as rotational accuracy,load distribution,and fatigue life,was studied through the analysis of examples.The results indicate that the influence of roundness error on the rotating inner raceway is more significant than that of roundness error on the nonrotating outer raceway.The roundness error on the rotating inner raceway always degrades the performance of CRBs.However,a proper roundness error on the nonrotating outer raceway can reduce the loads acting on the rollers and thus improve the fatigue life of CRBs.The effect of the roundness error amplitude on the bearing performance is ordinal,whereas the effect of the roundness order on the bearing performance is not in order.展开更多
Voltage profiles of feeders with the connection of distributed generations(DGs) were investigated.A unified typical load distribution model was established.Based on this model,exact expressions of feeder voltage profi...Voltage profiles of feeders with the connection of distributed generations(DGs) were investigated.A unified typical load distribution model was established.Based on this model,exact expressions of feeder voltage profile with single and double DGs were derived and used to analyze the impact of DG's location and capacity on the voltage profile quantitatively.Then,a general formula of the voltage profile was derived.The limitation of single DG and necessity of multiple DGs for voltage regulation were also discussed.Through the simulation,voltage profiles of feeders with single and double DGs were compared.The voltage excursion rate is 7.40% for only one DG,while 2.48% and 2.36% for double DGs.It is shown that the feeder voltage can be retained in a more appropriate range with multiple DGs than with only one DG.Distributing the total capacity of DGs is better than concentrating it at one point.展开更多
Two calculation modes for the effect of external load on slope stability, i.e., mode I in which the external load is thought to act on slope surface, and mode II in which the external load is thought to act on slip su...Two calculation modes for the effect of external load on slope stability, i.e., mode I in which the external load is thought to act on slope surface, and mode II in which the external load is thought to act on slip surface along the force action line, were considered. Meanwhile, four basic distribution patterns of external load were used, of which complex external loads could be composed. In analysis process, several limit equilibrium methods, such as Swedish method, simplified Bishop method, simplified Janbu method, Spencer method, Morgenstern-Price(M-P) method, Sarma method, and unbalanced thrust method, were also adopted to contrast their differences in slope stability under the external load. According to parametric analysis, some conclusions can be obtained as follows:(1) The external load, with the large magnitude, small inclination angle, and acting position close to the slope toe,has more positive effect on slope stability;(2) The results calculated using modes I and II of external load are similar, indicating that the calculation mode of external load has little influence on slope stability;(3) If different patterns of external loads are equivalent to each other, their slope stability under these external loads are the same, and if not, the external load leads to the better slope stability,as action position of the resultant force for external load is closer to the lower sliding point of slip surface.展开更多
基金supported by the National Natural Science Foundation of China(No.12172051,12172050,12141201,and 12221002)。
文摘Predictions of extreme near-field blast wave for cylindrical charge is crucial for designing sympathetic detonation protection structures,yet the quantitative analysis of detonation products and shock wave field are still insufficient.The present work conducted experiments and numerical simulations of nearfield explosion for kilogram scale cylindrical charge,and investigated the propagation and spatial distribution characteristics of incident and reflected blast waves.The results show that near-field reflected overpressure exhibits multi-peak structures,which are primarily governed by reflections of detonation products and shock wave.The reflected peak overpressure dominated by detonation products shows higher sensitivity to scaled distance.Meanwhile,the Rayleigh-Taylor instability(RTI)effect induces the evolutions of detonation products and shock wave interface from smooth to random microjets,increasing dispersion of secondary re flected peak overpressure.In free-field explosion,the incident peak overpressure exhibits a dual-peak structure,governed by the shock wave front and detonation products flowing past the gauge points.The incident peak overpressure dominated by detonation products is sensitive to orientations due to the charge structures.As the aspect ratio of charge increases from 0.6 to 8,the dominant radial azimuth angle region expands from 60°-90°to 30°-90°.An empirical model was developed to predict the spatial distributions of incident peak loads at arbitrary orientations for cylindrical charge with 0.6≤L/D≤8.0 and 0.06 m·kg^(-1/3)
基金Project(51178342)supported by the National Natural Science Foundation of ChinaProject(KLE-TJGE-C1301)supported by the Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education(Tongji University)under the International Cooperation and Exchange Program,China
文摘The boundary between the near and far fields is generally defined as the distance from the vibration source beyond which ground vibrations are mainly dominated by Rayleigh waves. It is closely related to the type of vibration source and the soil properties. Based on the solutions of the Lamb's problem, the boundary at the surface between the near and far fields of ground vibration was investigated for a harmonic vertical concentrated load and an infinite line load at the surface of a visco-elastic half-space. Particularly, the variation of the boundary with the material damping was investigated for both cases. The results indicate that the material damping slightly contributes to the attenuation of vibrations in the near-source region, but significantly reduces the vibrations in the region that is at some distance away from the source. When taking the material damping into consideration, the boundary between the near and far fields tends to move towards the vibration source. Compared with the vibrations caused by a concentrated load, the vibrations induced by an infinite line load can affect a larger range of the surrounding environment, and they attenuate more slowly. This means the boundary between the near field and far field should move fitrther away from the source. Finally, the boundaries are defined in terms of R-wave length (2R) and Poisson ratio of the ground (o). For the case of a point load, the boundary is located at the distance of (5.0-6.0)2R for v≤0.30 and at the distance of (2.0--3.0)2R for v≥0.35. For the case of an infinite line load, the boundary is located at the distance (5.5-6.5)2rt for v≤0.30 and at the distance (2.5--3.5)2R for v≥0.35.
基金Project(50875263) supported by the National Natural Science Foundation of ChinaProject(2011CB706800) supported by the National Basic Research Program of ChinaProject(2010ssxt172) supported by the Natural Science Foundation of Hunan Province,China
文摘The analytical method based on "Hertz theory on normal contact of elastic solids" and the numerical method based on finite element method (FEM) calculating the contact stress of face-gear drive with spur involute pinion were introduced, and their relative errors are below 10%, except edge contact, which turns out that these two methods can compute contact stress of face-gear drive correctly and effectively. An agreement of the localized bearing contact stress is gotten for these two methods, making sure that the calculation results of FEM are reliable. The loaded meshing simulations of multi-tooth FEM model were developed, and the determination of the transmission error and the maximal load distribution factor of face-gear drive under torques were given. A formula for the maximal load distribution factor was proposed. By introducing the maximal load distribution factor in multi-tooth contact zone, a method for calculating the maximal contact stress in multi-tooth contact can be given. Compared to FEM, the results of these formulae are proved to be reliable, and the relative errors are below 10%.
基金Project(51575062)supported by the National Natural Science Foundation of ChinaProject(51605049)supported by the National Natural Science Foundation for Young Scholar of ChinaProject(BA2015177)supported by the Science and Technology Achievements Transformation Program of Jiangsu Province of China
文摘Cycloid speed reducers are widely used in many industrial areas due to the advantages of compact size, high reduction ratio and high stiffness. However, currently, there are not many analytical models for the mesh stiffness calculation, which is a crucial parameter for the high-fidelity gear dynamic model. This is partially due to the difficulty of backlash determination and the complexity of multi-tooth contact deformation during the meshing process. In this paper, a new method to calculate the mesh stiffness is proposed including the effects of tooth profile modification and eccentricity error. The time-varying mesh parameters and load distribution of cycloid-pin gear pair are determined based on the unloaded tooth contact analysis (TCA) and the nonlinear Hertzian contact theory, allowing accurate calculations of the contact stiffness of single tooth pair and the torsional stiffness of multi-tooth pairs. A detailed parametric study is presented to demonstrate the influences of tooth profile modification, applied torque and eccentricity error on the torsional mesh stiffness, loaded transmission error, Hertzian contact stiffness and load sharing factor. This model can be applied to further study the lost motion and dynamic characteristics of cycloid speed reducer and assist the optimization of its precision, vibration and noise levels.
基金funded by the National Natural Science Foundation of China(Grant Nos.51578543)。
文摘Reinforced concrete(RC) columns are widely used as supporting structures for high-piled wharfs.The study of damage model of a RC column due to underwater explosion is a critical issue to assess the wharfs antiknock security.In this study,the dynamic response and damage model of circular RC columns subjected to underwater explosions were investigated by means of scaled-down experiment models.Experiments were carried out in a 10.0 m diameter tank with the water depth of 2.25 m,under different explosive quantities(0.025 kg-1.6 kg),stand-off distances(0.0 m-7.0 m),and detonation depths(0.25 m-2.0 m).The shock wave load and dynamic response of experiment models were measured by configuring sensors of pressure,acceleration,strain,and displacement.Then,the load distribution characteristics,time history of test data,and damage models related to present conditions were obtained and discussed.Three damage models,including bending failure,bending-shear failure and punching failure,were identified.In addition,the experie nce model of shock wave loads on the surface of a RC column was proposed for engineering application.
基金Project(2003AA430200) supported by the National High-Tech Research and Development Program of China
文摘A retrofitted electro-hydraulic proportional system for hydraulic excavator was introduced firstly. According to the principle and characteristic of load independent flow distribution(LUDV) system,taking boom hydraulic system as an example and ignoring the leakage of hydraulic cylinder and the mass of oil in it,a force equilibrium equation and a continuous equation of hydraulic cylinder were set up. Based on the flow equation of electro-hydraulic proportional valve,the pressure passing through the valve and the difference of pressure were tested and analyzed. The results show that the difference of pressure does not change with load,and it approximates to 2.0 MPa. And then,assume the flow across the valve is directly proportional to spool displacement and is not influenced by load,a simplified model of electro-hydraulic system was put forward. At the same time,by analyzing the structure and load-bearing of boom instrument,and combining moment equivalent equation of manipulator with rotating law,the estimation methods and equations for such parameters as equivalent mass and bearing force of hydraulic cylinder were set up. Finally,the step response of flow of boom cylinder was tested when the electro-hydraulic proportional valve was controlled by the step current. Based on the experiment curve,the flow gain coefficient of valve is identified as 2.825×10-4 m3/(s·A) and the model is verified.
基金Project(51775059)supported by the National Natural Science Foundation of ChinaProject(2017YFB1300700)supported by the National Key Research&Development Program of China。
文摘Taking the raceway roundness error into account,mechanical characteristics of cross roller bearings(CRBs)were investigated.A static analysis model of CRBs considering the raceway roundness error was established.Based on this model,the rotational accuracy and load distribution of CRBs under constraints of geometry and external loads were derived.The fatigue life of CRBs with roundness error was calculated by applying Palmgren-Miner linear cumulative damage theory.The influence of inner and outer raceway roundness error on the performance of the CRBs,such as rotational accuracy,load distribution,and fatigue life,was studied through the analysis of examples.The results indicate that the influence of roundness error on the rotating inner raceway is more significant than that of roundness error on the nonrotating outer raceway.The roundness error on the rotating inner raceway always degrades the performance of CRBs.However,a proper roundness error on the nonrotating outer raceway can reduce the loads acting on the rollers and thus improve the fatigue life of CRBs.The effect of the roundness error amplitude on the bearing performance is ordinal,whereas the effect of the roundness order on the bearing performance is not in order.
基金Projects(60904101,60972164) supported by the National Natural Science Foundation of ChinaProject(N090404009) supported by the Fundamental Research Funds for the Central UniversitiesProject(20090461187) supported by China Postdoctoral Science Foundation
文摘Voltage profiles of feeders with the connection of distributed generations(DGs) were investigated.A unified typical load distribution model was established.Based on this model,exact expressions of feeder voltage profile with single and double DGs were derived and used to analyze the impact of DG's location and capacity on the voltage profile quantitatively.Then,a general formula of the voltage profile was derived.The limitation of single DG and necessity of multiple DGs for voltage regulation were also discussed.Through the simulation,voltage profiles of feeders with single and double DGs were compared.The voltage excursion rate is 7.40% for only one DG,while 2.48% and 2.36% for double DGs.It is shown that the feeder voltage can be retained in a more appropriate range with multiple DGs than with only one DG.Distributing the total capacity of DGs is better than concentrating it at one point.
基金Project(2015M580702)supported by the China Postdoctoral Science FoundationProject(51608541)supported by the National Natural Science Foundation of ChinaProject(2014122006)supported by the Guizhou Provincial Department of Transportation Foundation,China
文摘Two calculation modes for the effect of external load on slope stability, i.e., mode I in which the external load is thought to act on slope surface, and mode II in which the external load is thought to act on slip surface along the force action line, were considered. Meanwhile, four basic distribution patterns of external load were used, of which complex external loads could be composed. In analysis process, several limit equilibrium methods, such as Swedish method, simplified Bishop method, simplified Janbu method, Spencer method, Morgenstern-Price(M-P) method, Sarma method, and unbalanced thrust method, were also adopted to contrast their differences in slope stability under the external load. According to parametric analysis, some conclusions can be obtained as follows:(1) The external load, with the large magnitude, small inclination angle, and acting position close to the slope toe,has more positive effect on slope stability;(2) The results calculated using modes I and II of external load are similar, indicating that the calculation mode of external load has little influence on slope stability;(3) If different patterns of external loads are equivalent to each other, their slope stability under these external loads are the same, and if not, the external load leads to the better slope stability,as action position of the resultant force for external load is closer to the lower sliding point of slip surface.