Aiming at the hybrid flow-shop (HFS) scheduling that is a complex NP-hard combinatorial problem with wide engineering background, an effective algorithm based on differential evolution (DE) is proposed. By using a...Aiming at the hybrid flow-shop (HFS) scheduling that is a complex NP-hard combinatorial problem with wide engineering background, an effective algorithm based on differential evolution (DE) is proposed. By using a special encoding scheme and combining DE based evolutionary search and local search, the exploration and exploitation abilities are enhanced and well balanced for solving the HFS problems. Simulation results based on some typical problems and comparisons with some existing genetic algorithms demonstrate the proposed algorithm is effective, efficient and robust for solving the HFS problems.展开更多
The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor...The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.展开更多
针对可重入制造系统多具有多品种、大规模、混流生产等特点,构建带批处理机的可重入混合流水车间调度问题(reentrant hybrid flow shop scheduling problem with batch processors,BPRHFSP)模型,提出一种改进的多目标蜉蝣算法(multi-obj...针对可重入制造系统多具有多品种、大规模、混流生产等特点,构建带批处理机的可重入混合流水车间调度问题(reentrant hybrid flow shop scheduling problem with batch processors,BPRHFSP)模型,提出一种改进的多目标蜉蝣算法(multi-objective mayfly algorithm,MOMA)进行求解。提出了单件加工阶段和批处理阶段的解码规则;设计了基于Logistic混沌映射的反向学习初始化策略、改进的蜉蝣交配和变异策略,提高了算法初始解的质量和局部搜索能力;根据编码规则设计了基于变邻域下降搜索的蜉蝣运动策略,优化了种群方向。通过对不同规模大量测试算例的仿真实验,验证了MOMA相比传统算法求解BP-RHFSP更具有效性和优越性。所提出的模型能够反映生产的基础特征,达到减少最大完工时间、机器负载和碳排放的目的。展开更多
基金supported by the National Natural Science Fundation of China (60774082 70871065+2 种基金 60834004)the Program for New Century Excellent Talents in University (NCET-10-0505)the Doctoral Program Foundation of Institutions of Higher Education of China(20100002110014)
文摘Aiming at the hybrid flow-shop (HFS) scheduling that is a complex NP-hard combinatorial problem with wide engineering background, an effective algorithm based on differential evolution (DE) is proposed. By using a special encoding scheme and combining DE based evolutionary search and local search, the exploration and exploitation abilities are enhanced and well balanced for solving the HFS problems. Simulation results based on some typical problems and comparisons with some existing genetic algorithms demonstrate the proposed algorithm is effective, efficient and robust for solving the HFS problems.
基金Projects(61573144,61773165,61673175,61174040)supported by the National Natural Science Foundation of ChinaProject(222201717006)supported by the Fundamental Research Funds for the Central Universities,China
文摘The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.