To compress hyperspectral images, a low complexity discrete cosine transform (DCT)-based distributed source coding (DSC) scheme with Gray code is proposed. Unlike most of the existing DSC schemes, which utilize tr...To compress hyperspectral images, a low complexity discrete cosine transform (DCT)-based distributed source coding (DSC) scheme with Gray code is proposed. Unlike most of the existing DSC schemes, which utilize transform in spatial domain, the proposed algorithm applies transform in spectral domain. Set-partitioning-based approach is applied to reorganize DCT coefficients into waveletlike tree structure and extract the sign, refinement, and significance bitplanes. The extracted refinement bits are Gray encoded. Because of the dependency along the line dimension of hyperspectral images, low density paritycheck-(LDPC)-based Slepian-Wolf coder is adopted to implement the DSC strategy. Experimental results on airborne visible/infrared imaging spectrometer (AVIRIS) dataset show that the proposed paradigm achieves up to 6 dB improvement over DSC-based coders which apply transform in spatial domain, with significantly reduced computational complexity and memory storage.展开更多
LT codes are practical realization of digital fountain codes, which provides the concept of rateless coding. In this scheme, encoded symbols are generated infinitely from k information symbols. Decoder uses only(1+α)...LT codes are practical realization of digital fountain codes, which provides the concept of rateless coding. In this scheme, encoded symbols are generated infinitely from k information symbols. Decoder uses only(1+α)k number of encoded symbols to recover the original information. The degree distribution function in the LT codes helps to generate a random graph also referred as tanner graph. The artifact of tanner graph is responsible for computational complexity and overhead in the LT codes. Intuitively, a well designed degree distribution can be used for an efficient implementation of LT codes. The degree distribution function is studied as a function of power law, and LT codes are classified into two different categories: SFLT and RLT codes. Also, two different degree distributions are proposed and analyzed for SFLT codes which guarantee optimal performance in terms of computational complexity and overhead.展开更多
An improved scheme with cooperative diversity based on distributed space-time block coding (WCD- DSTBC) is proposed, which effectively achieves diversity gains and improves the performance of the system by sharing s...An improved scheme with cooperative diversity based on distributed space-time block coding (WCD- DSTBC) is proposed, which effectively achieves diversity gains and improves the performance of the system by sharing some single-antenna users' antennas to form a virtual antenna array and combining with distributed spacetime block coding (DSTBC) mode. Then the relation between the system BER and the interuser BER for WCDDSTBC scheme is theoretically derived and the closed-form expression of BER for WCD-DSTBC system is obtained. The simulation results show that the proposed WCD-DSTBC scheme achieves distinct gains over the non-cooperative multi-carrier CDMA (MC-CDMA) system. When system BER is le-3 and interuser BER is le-3, about 2.5 dB gain can be gotten. When interuser channel state information (CSI) outgoes the users' individual CSI, about 3 dB gain is also achieved.展开更多
在大规模分布式存储系统的广泛应用背景下,传统容错编码方案在单盘和双盘故障修复过程中面临读取资源消耗高、修复效率不足等技术难题,提出一种具有局部修复特性的混合校验编码方案——VC-code(vertical central symmetric code)。VC-c...在大规模分布式存储系统的广泛应用背景下,传统容错编码方案在单盘和双盘故障修复过程中面临读取资源消耗高、修复效率不足等技术难题,提出一种具有局部修复特性的混合校验编码方案——VC-code(vertical central symmetric code)。VC-code通过融合横纵式阵列码的快速修复与负载均衡特性,设计了一种局部水平校验与对角校验交叉融合的结构,并采用纵向中心对称校验布局优化数据依赖关系。该设计将单盘和双盘故障修复的数据读取量显著降低,同时通过缩短修复链提升整体效率。理论分析表明,在单双盘故障恢复时大幅降低了数据读取开销。实验结果进一步验证了其性能优势,与RDP码、LRRDP码以及DRDP码相比,VC-code在单盘故障修复时间上减少了10.45%~29.57%,在双盘故障修复时间上减少了6.35%~33.24%。展开更多
以磁盘冗余阵列(Redundant Array of Inexpensive Disks,RAID)技术中新出现的P-code编码为主要对象,进行了其构造方法、编码及译码算法的详细分析,并首次运用位矩阵(Binary Distribution Matrix,BDM)的方法分析和研究了P-code码。在此...以磁盘冗余阵列(Redundant Array of Inexpensive Disks,RAID)技术中新出现的P-code编码为主要对象,进行了其构造方法、编码及译码算法的详细分析,并首次运用位矩阵(Binary Distribution Matrix,BDM)的方法分析和研究了P-code码。在此基础上,对当前主要RAID-6编码的扩展即更多磁盘数量的容错问题进行了总结与探讨,提出了P-code等垂直最大距离可分码(Maximum Distance Separable,MDS)的扩展将是该领域未来研究的新方向和难点。展开更多
基金supported by the National Natural Science Foundationof China (60702012)the Scientific Research Foundation for the Re-turned Overseas Chinese Scholars, State Education Ministry
文摘To compress hyperspectral images, a low complexity discrete cosine transform (DCT)-based distributed source coding (DSC) scheme with Gray code is proposed. Unlike most of the existing DSC schemes, which utilize transform in spatial domain, the proposed algorithm applies transform in spectral domain. Set-partitioning-based approach is applied to reorganize DCT coefficients into waveletlike tree structure and extract the sign, refinement, and significance bitplanes. The extracted refinement bits are Gray encoded. Because of the dependency along the line dimension of hyperspectral images, low density paritycheck-(LDPC)-based Slepian-Wolf coder is adopted to implement the DSC strategy. Experimental results on airborne visible/infrared imaging spectrometer (AVIRIS) dataset show that the proposed paradigm achieves up to 6 dB improvement over DSC-based coders which apply transform in spatial domain, with significantly reduced computational complexity and memory storage.
基金Supported by National Natural Science Foundation of China(61170147) Major Cooperation Project of Production and College in Fujian Province(2012H61010016) Natural Science Foundation of Fujian Province(2013J01234)
基金supported by Research Fund Chosun Univerity,2011
文摘LT codes are practical realization of digital fountain codes, which provides the concept of rateless coding. In this scheme, encoded symbols are generated infinitely from k information symbols. Decoder uses only(1+α)k number of encoded symbols to recover the original information. The degree distribution function in the LT codes helps to generate a random graph also referred as tanner graph. The artifact of tanner graph is responsible for computational complexity and overhead in the LT codes. Intuitively, a well designed degree distribution can be used for an efficient implementation of LT codes. The degree distribution function is studied as a function of power law, and LT codes are classified into two different categories: SFLT and RLT codes. Also, two different degree distributions are proposed and analyzed for SFLT codes which guarantee optimal performance in terms of computational complexity and overhead.
基金supported by the State Key Laboratory for Mobile Communication Open Foundation(N200502)the Natural Science Foundation of Jiangsu Province(BK2007192).
文摘An improved scheme with cooperative diversity based on distributed space-time block coding (WCD- DSTBC) is proposed, which effectively achieves diversity gains and improves the performance of the system by sharing some single-antenna users' antennas to form a virtual antenna array and combining with distributed spacetime block coding (DSTBC) mode. Then the relation between the system BER and the interuser BER for WCDDSTBC scheme is theoretically derived and the closed-form expression of BER for WCD-DSTBC system is obtained. The simulation results show that the proposed WCD-DSTBC scheme achieves distinct gains over the non-cooperative multi-carrier CDMA (MC-CDMA) system. When system BER is le-3 and interuser BER is le-3, about 2.5 dB gain can be gotten. When interuser channel state information (CSI) outgoes the users' individual CSI, about 3 dB gain is also achieved.
文摘针对具有星间链路(inter-satellite links,ISL)的低轨(low earth orbit,LEO)多卫星系统,提出了一种基于多卫星协作传输的和速率(sum rate,SR)最大化预编码算法.传统的预编码算法需要复杂的星上计算来得到数值解,这导致低轨卫星系统面临较大的计算开销和延迟问题.为解决上述关键问题,设计了一种基于交替方向乘子法(alternating direction method of multipliers,ADMM)的高吞吐量、低复杂度、具有闭式解的分布式预编码算法.该算法通过构建辅助变量和问题分解,将预编码设计问题转化为多个子问题并行求解,每个子问题仅有一个约束条件,并在每次迭代后仅通过星间链路交换设计的数据矩阵,从而有效实现分布式预编码.仿真结果表明,与典型的两步和速率最大化算法相比,所提出的算法可以实现更高的和速率,同时大幅降低计算复杂度.
文摘在大规模分布式存储系统的广泛应用背景下,传统容错编码方案在单盘和双盘故障修复过程中面临读取资源消耗高、修复效率不足等技术难题,提出一种具有局部修复特性的混合校验编码方案——VC-code(vertical central symmetric code)。VC-code通过融合横纵式阵列码的快速修复与负载均衡特性,设计了一种局部水平校验与对角校验交叉融合的结构,并采用纵向中心对称校验布局优化数据依赖关系。该设计将单盘和双盘故障修复的数据读取量显著降低,同时通过缩短修复链提升整体效率。理论分析表明,在单双盘故障恢复时大幅降低了数据读取开销。实验结果进一步验证了其性能优势,与RDP码、LRRDP码以及DRDP码相比,VC-code在单盘故障修复时间上减少了10.45%~29.57%,在双盘故障修复时间上减少了6.35%~33.24%。
文摘以磁盘冗余阵列(Redundant Array of Inexpensive Disks,RAID)技术中新出现的P-code编码为主要对象,进行了其构造方法、编码及译码算法的详细分析,并首次运用位矩阵(Binary Distribution Matrix,BDM)的方法分析和研究了P-code码。在此基础上,对当前主要RAID-6编码的扩展即更多磁盘数量的容错问题进行了总结与探讨,提出了P-code等垂直最大距离可分码(Maximum Distance Separable,MDS)的扩展将是该领域未来研究的新方向和难点。