The distributed denial of service (DDoS) attack is one of the dangers in intrusion modes. It's difficult to defense and can cause serious damage to the system. Based on a careful study of the attack principles and...The distributed denial of service (DDoS) attack is one of the dangers in intrusion modes. It's difficult to defense and can cause serious damage to the system. Based on a careful study of the attack principles and characteristics, an object-oriented formalized description is presented, which contains a three-level framework and offers full specifications of all kinds of DDoS modes and their features and the relations between one another. Its greatest merit lies in that it contributes to analyzing, checking and judging DDoS. Now this formalized description has been used in a special IDS and it works very effectively.(展开更多
SDN (Software Defined Network) has many security problems, and DDoS attack is undoubtedly the most serious harm to SDN architecture network. How to accurately and effectively detect DDoS attacks has always been a diff...SDN (Software Defined Network) has many security problems, and DDoS attack is undoubtedly the most serious harm to SDN architecture network. How to accurately and effectively detect DDoS attacks has always been a difficult point and focus of SDN security research. Based on the characteristics of SDN, a DDoS attack detection method combining generalized entropy and PSOBP neural network is proposed. The traffic is pre-detected by the generalized entropy method deployed on the switch, and the detection result is divided into normal and abnormal. Locate the switch that issued the abnormal alarm. The controller uses the PSO-BP neural network to detect whether a DDoS attack occurs by further extracting the flow features of the abnormal switch. Experiments show that compared with other methods, the detection accurate rate is guaranteed while the CPU load of the controller is reduced, and the detection capability is better.展开更多
With the rapid development of the sixth generation(6G)network and Internet of Things(IoT),it has become extremely challenging to efficiently detect and prevent the distributed denial of service(DDoS)attacks originatin...With the rapid development of the sixth generation(6G)network and Internet of Things(IoT),it has become extremely challenging to efficiently detect and prevent the distributed denial of service(DDoS)attacks originating from IoT devices.In this paper we propose an innovative trust model for IoT devices to prevent potential DDoS attacks by evaluating their trustworthiness,which can be deployed in the access network of 6G IoT.Based on historical communication behaviors,this model combines spatial trust and temporal trust values to comprehensively characterize the normal behavior patterns of IoT devices,thereby effectively distinguishing attack traffic.Experimental results show that the proposed method can efficiently distinguish normal traffic from DDoS traffic.Compared with the benchmark methods,our method has advantages in terms of both accuracy and efficiency in identifying attack flows.展开更多
In unstructured peer-to-peer (P2P) systems such as Gnutella, a general routing search algorithm is used to blindly flood a query through network among peers. But unfortunately, malicious nodes could easily make use ...In unstructured peer-to-peer (P2P) systems such as Gnutella, a general routing search algorithm is used to blindly flood a query through network among peers. But unfortunately, malicious nodes could easily make use of the search approach launching distributed denial of service (DDoS) attack which aims at the whole network. In order to alleviate or minimize the bad effect due to behavior of malicious nodes using the flooding search mechanism, the paper proposes a Markov-based evaluation model which exerts the trust and reputation mechanism to computing the level of trustworthy of nodes having the information requested by evaluation of the nodes' history behavior. Moreover, it can differentiate malicious nodes as early as possible for isolating and controlling the ones' message transmitted. The simulation results of the algorithm proposed show that it could effectively isolate malicious nodes, and hold back the transmission of vicious messages so that it could enhance tolerance of DDoS based on flooding in Guutella-like P2P network.展开更多
Link flooding attack(LFA)is a type of covert distributed denial of service(DDoS)attack.The attack mechanism of LFAs is to flood critical links within the network to cut off the target area from the Internet.Recently,t...Link flooding attack(LFA)is a type of covert distributed denial of service(DDoS)attack.The attack mechanism of LFAs is to flood critical links within the network to cut off the target area from the Internet.Recently,the proliferation of Internet of Things(IoT)has increased the quantity of vulnerable devices connected to the network and has intensified the threat of LFAs.In LFAs,attackers typically utilize low-speed flows that do not reach the victims,making the attack difficult to detect.Traditional LFA defense methods mainly reroute the attack traffic around the congested link,which encounters high complexity and high computational overhead due to the aggregation of massive attack traffic.To address these challenges,we present an LFA defense framework which can mitigate the attack flows at the border switches when they are small in scale.This framework is lightweight and can be deployed at border switches of the network in a distributed manner,which ensures the scalability of our defense system.The performance of our framework is assessed in an experimental environment.The simulation results indicate that our method is effective in detecting and mitigating LFAs with low time complexity.展开更多
软件定义网络(SDN,software defined network)作为一种新兴的网络架构,其安全问题一直是SDN领域研究的热点,如SDN控制通道安全性、伪造服务部署及外部分布式拒绝服务(DDoS,distributed denial of service)攻击等。针对SDN安全中的外部D...软件定义网络(SDN,software defined network)作为一种新兴的网络架构,其安全问题一直是SDN领域研究的热点,如SDN控制通道安全性、伪造服务部署及外部分布式拒绝服务(DDoS,distributed denial of service)攻击等。针对SDN安全中的外部DDoS攻击问题进行研究,提出了一种基于深度学习混合模型的DDoS攻击检测方法——DCNN-DSAE。该方法在构建深度学习模型时,输入特征除了从数据平面提取的21个不同类型的字段外,同时设计了能够区分流类型的5个额外流表特征。实验结果表明,该方法具有较高的精确度,优于传统的支持向量机和深度神经网络等机器学习方法,同时,该方法还可以缩短分类检测的处理时间。将该检测模型部署于控制器中,利用检测结果产生新的安全策略,下发到Open Flow交换机中,以实现对特定DDoS攻击的防御。展开更多
为了对泛洪DoS/DDoS(Denial of Service/Distributed Denial of Service)攻击做出准确判断,在对泛洪DoS/DDoS攻击发生时网络流量变化特性进行分析的基础上,给出一种基于网络异常流量判断泛洪DoS/DDoS攻击的检测算法。该算法通过对流量...为了对泛洪DoS/DDoS(Denial of Service/Distributed Denial of Service)攻击做出准确判断,在对泛洪DoS/DDoS攻击发生时网络流量变化特性进行分析的基础上,给出一种基于网络异常流量判断泛洪DoS/DDoS攻击的检测算法。该算法通过对流量大小和波动趋势的判断,对泛洪DoS/DDoS攻击的发生进行检测。实验结果表明,在不失一般性的基础上,判断泛洪DoS/DDoS攻击的成功率为100%。展开更多
文摘The distributed denial of service (DDoS) attack is one of the dangers in intrusion modes. It's difficult to defense and can cause serious damage to the system. Based on a careful study of the attack principles and characteristics, an object-oriented formalized description is presented, which contains a three-level framework and offers full specifications of all kinds of DDoS modes and their features and the relations between one another. Its greatest merit lies in that it contributes to analyzing, checking and judging DDoS. Now this formalized description has been used in a special IDS and it works very effectively.(
基金supported by the Hebei Province Innovation Capacity Improvement Program of China under Grant No.179676278Dthe Ministry of Education Fund Project of China under Grant No.2017A20004
文摘SDN (Software Defined Network) has many security problems, and DDoS attack is undoubtedly the most serious harm to SDN architecture network. How to accurately and effectively detect DDoS attacks has always been a difficult point and focus of SDN security research. Based on the characteristics of SDN, a DDoS attack detection method combining generalized entropy and PSOBP neural network is proposed. The traffic is pre-detected by the generalized entropy method deployed on the switch, and the detection result is divided into normal and abnormal. Locate the switch that issued the abnormal alarm. The controller uses the PSO-BP neural network to detect whether a DDoS attack occurs by further extracting the flow features of the abnormal switch. Experiments show that compared with other methods, the detection accurate rate is guaranteed while the CPU load of the controller is reduced, and the detection capability is better.
基金This work was supported in part by the National Key R&D Program of China under Grant 2020YFA0711301in part by the National Natural Science Foundation of China under Grant 61922049,and Grant 61941104in part by the Tsinghua University-China Mobile Communications Group Company Ltd.,Joint Institute.
文摘With the rapid development of the sixth generation(6G)network and Internet of Things(IoT),it has become extremely challenging to efficiently detect and prevent the distributed denial of service(DDoS)attacks originating from IoT devices.In this paper we propose an innovative trust model for IoT devices to prevent potential DDoS attacks by evaluating their trustworthiness,which can be deployed in the access network of 6G IoT.Based on historical communication behaviors,this model combines spatial trust and temporal trust values to comprehensively characterize the normal behavior patterns of IoT devices,thereby effectively distinguishing attack traffic.Experimental results show that the proposed method can efficiently distinguish normal traffic from DDoS traffic.Compared with the benchmark methods,our method has advantages in terms of both accuracy and efficiency in identifying attack flows.
基金Supported by the National Natural Science Foundation of China (No.6057312, 60473090)
文摘In unstructured peer-to-peer (P2P) systems such as Gnutella, a general routing search algorithm is used to blindly flood a query through network among peers. But unfortunately, malicious nodes could easily make use of the search approach launching distributed denial of service (DDoS) attack which aims at the whole network. In order to alleviate or minimize the bad effect due to behavior of malicious nodes using the flooding search mechanism, the paper proposes a Markov-based evaluation model which exerts the trust and reputation mechanism to computing the level of trustworthy of nodes having the information requested by evaluation of the nodes' history behavior. Moreover, it can differentiate malicious nodes as early as possible for isolating and controlling the ones' message transmitted. The simulation results of the algorithm proposed show that it could effectively isolate malicious nodes, and hold back the transmission of vicious messages so that it could enhance tolerance of DDoS based on flooding in Guutella-like P2P network.
基金supported in part by the National Key R&D Program of China under Grant 2018YFA0701601in part by the National Natural Science Foundation of China(Grant No.62201605,62341110,U22A2002)in part by Tsinghua University-China Mobile Communications Group Co.,Ltd.Joint Institute。
文摘Link flooding attack(LFA)is a type of covert distributed denial of service(DDoS)attack.The attack mechanism of LFAs is to flood critical links within the network to cut off the target area from the Internet.Recently,the proliferation of Internet of Things(IoT)has increased the quantity of vulnerable devices connected to the network and has intensified the threat of LFAs.In LFAs,attackers typically utilize low-speed flows that do not reach the victims,making the attack difficult to detect.Traditional LFA defense methods mainly reroute the attack traffic around the congested link,which encounters high complexity and high computational overhead due to the aggregation of massive attack traffic.To address these challenges,we present an LFA defense framework which can mitigate the attack flows at the border switches when they are small in scale.This framework is lightweight and can be deployed at border switches of the network in a distributed manner,which ensures the scalability of our defense system.The performance of our framework is assessed in an experimental environment.The simulation results indicate that our method is effective in detecting and mitigating LFAs with low time complexity.
文摘软件定义网络(SDN,software defined network)作为一种新兴的网络架构,其安全问题一直是SDN领域研究的热点,如SDN控制通道安全性、伪造服务部署及外部分布式拒绝服务(DDoS,distributed denial of service)攻击等。针对SDN安全中的外部DDoS攻击问题进行研究,提出了一种基于深度学习混合模型的DDoS攻击检测方法——DCNN-DSAE。该方法在构建深度学习模型时,输入特征除了从数据平面提取的21个不同类型的字段外,同时设计了能够区分流类型的5个额外流表特征。实验结果表明,该方法具有较高的精确度,优于传统的支持向量机和深度神经网络等机器学习方法,同时,该方法还可以缩短分类检测的处理时间。将该检测模型部署于控制器中,利用检测结果产生新的安全策略,下发到Open Flow交换机中,以实现对特定DDoS攻击的防御。
文摘为了对泛洪DoS/DDoS(Denial of Service/Distributed Denial of Service)攻击做出准确判断,在对泛洪DoS/DDoS攻击发生时网络流量变化特性进行分析的基础上,给出一种基于网络异常流量判断泛洪DoS/DDoS攻击的检测算法。该算法通过对流量大小和波动趋势的判断,对泛洪DoS/DDoS攻击的发生进行检测。实验结果表明,在不失一般性的基础上,判断泛洪DoS/DDoS攻击的成功率为100%。