In this paper we introduce several new similarity measures and distance measures between fuzzy soft sets, these measures are examined based on the set-theoretic approach and the matching function. Comparative studies ...In this paper we introduce several new similarity measures and distance measures between fuzzy soft sets, these measures are examined based on the set-theoretic approach and the matching function. Comparative studies of these measures are derived. By introducing two general formulas, we propose a new method to define the similarity measures and the distance measures between two fuzzy soft sets with different parameter sets.展开更多
Because of the uncertainty and subjectivity of decision makers in the complex decision-making environment,the evaluation information of alternatives given by decision makers is often fuzzy and uncertain.As a generaliz...Because of the uncertainty and subjectivity of decision makers in the complex decision-making environment,the evaluation information of alternatives given by decision makers is often fuzzy and uncertain.As a generalization of intuitionistic fuzzy set(IFSs)and Pythagoras fuzzy set(PFSs),q-rung orthopair fuzzy set(q-ROFS)is more suitable for expressing fuzzy and uncertain information.But,in actual multiple attribute decision making(MADM)problems,the weights of DMs and attributes are always completely unknown or partly known,to date,the maximizing deviation method is a good tool to deal with such issues.Thus,combine the q-ROFS and conventional maximizing deviation method,we will study the maximizing deviation method under q-ROFSs and q-RIVOFSs in this paper.Firstly,we briefly introduce the basic concept of q-rung orthopair fuzzy sets(q-ROFSs)and q-rung interval-valued orthopair fuzzy sets(q-RIVOFSs).Then,combine the maximizing deviation method with q-rung orthopair fuzzy information,we establish two new decision making models.On this basis,the proposed models are applied to MADM problems with q-rung orthopair fuzzy information.Compared with existing methods,the effectiveness and superiority of the new model are analyzed.This method can effectively solve the MADM problem whose decision information is represented by q-rung orthopair fuzzy numbers(q-ROFNs)and whose attributes are incomplete.展开更多
The concept of b-vex and logarithmic b-vex for fuzzy mappings are introduced by relaxing the definition of convexity of a fuzzy mapping. Most of the basic properties of b-vex fuzzy mapping are discussed and establish...The concept of b-vex and logarithmic b-vex for fuzzy mappings are introduced by relaxing the definition of convexity of a fuzzy mapping. Most of the basic properties of b-vex fuzzy mapping are discussed and established for the nondifferentiable case. Necessary and sufficient conditions for b-vex fuzzy mapping are presented. Sevaral important results are given for nonlinear fuzzy optimization problems assuming that the objective and constraint functions are b-vex fuzzy mappings.展开更多
基金Supported by the National Natural Science Foundation of China(6147323961175044) Supported by the Fundamental Research Funds for the Central Universities of China(2682014ZT28)
文摘In this paper we introduce several new similarity measures and distance measures between fuzzy soft sets, these measures are examined based on the set-theoretic approach and the matching function. Comparative studies of these measures are derived. By introducing two general formulas, we propose a new method to define the similarity measures and the distance measures between two fuzzy soft sets with different parameter sets.
基金supported by the National Natural Science Foundation of China under Grant No.71571128the Humanities and Social Sciences Foundation of Ministry of Education of the People’s Republic of China(No.17XJA630003).
文摘Because of the uncertainty and subjectivity of decision makers in the complex decision-making environment,the evaluation information of alternatives given by decision makers is often fuzzy and uncertain.As a generalization of intuitionistic fuzzy set(IFSs)and Pythagoras fuzzy set(PFSs),q-rung orthopair fuzzy set(q-ROFS)is more suitable for expressing fuzzy and uncertain information.But,in actual multiple attribute decision making(MADM)problems,the weights of DMs and attributes are always completely unknown or partly known,to date,the maximizing deviation method is a good tool to deal with such issues.Thus,combine the q-ROFS and conventional maximizing deviation method,we will study the maximizing deviation method under q-ROFSs and q-RIVOFSs in this paper.Firstly,we briefly introduce the basic concept of q-rung orthopair fuzzy sets(q-ROFSs)and q-rung interval-valued orthopair fuzzy sets(q-RIVOFSs).Then,combine the maximizing deviation method with q-rung orthopair fuzzy information,we establish two new decision making models.On this basis,the proposed models are applied to MADM problems with q-rung orthopair fuzzy information.Compared with existing methods,the effectiveness and superiority of the new model are analyzed.This method can effectively solve the MADM problem whose decision information is represented by q-rung orthopair fuzzy numbers(q-ROFNs)and whose attributes are incomplete.
文摘The concept of b-vex and logarithmic b-vex for fuzzy mappings are introduced by relaxing the definition of convexity of a fuzzy mapping. Most of the basic properties of b-vex fuzzy mapping are discussed and established for the nondifferentiable case. Necessary and sufficient conditions for b-vex fuzzy mapping are presented. Sevaral important results are given for nonlinear fuzzy optimization problems assuming that the objective and constraint functions are b-vex fuzzy mappings.