In polar regions, floating ice exhibits distinct characteristics across a range of spatial scales. It is well recognized that the irregular geometry of these ice formations markedly influences their dynamic behavior. ...In polar regions, floating ice exhibits distinct characteristics across a range of spatial scales. It is well recognized that the irregular geometry of these ice formations markedly influences their dynamic behavior. This study introduces a polyhedral Discrete Element Method (DEM) tailored for polar ice, incorporating the Gilbert-Johnson-Keerthi (GJK) and Expanding Polytope Algorithm (EPA) for contact detection. This approach facilitates the simulation of the drift and collision processes of floating ice, effectively capturing its freezing and fragmentation. Subsequently, the stability and reli ability of this model are validated by uniaxial compression on level ice fields, focusing specifically on the influence of compression strength on deformation resistance. Additionally, clusters of ice floes nav igating through narrow channels are simulated. These studies have qualitatively assessed the effects of Floe Size Distribution (FSD), initial concentration, and circularity on their flow dynamics. The higher power-law exponent values in the FSD, increased circularity, and decreased concentration are each as sociated with accelerated flow in ice floe fields. The simulation results distinctly demonstrate the con siderable impact of sea ice geometry on the movement of clusters, offering valuable insights into the complexities of polar ice dynamics.展开更多
The discrete element method (DEM) was used to simulate the flow characteristic and strength characteristic of the conditioned sands in the earth pressure balance (EPB) tunneling. In the laboratory the conditioned sand...The discrete element method (DEM) was used to simulate the flow characteristic and strength characteristic of the conditioned sands in the earth pressure balance (EPB) tunneling. In the laboratory the conditioned sands were reproduced and the slump test and the direct shear test of the conditioned sands were implemented. A DEM equivalent model that can simulate the macro mechanical characteristic of the conditioned sands was proposed,and the corresponding numerical models of the slump test and the shear test were established. By selecting proper DEM model parameters,the errors of the slump values between the simulation results and the test results are in the range of 10.3%-14.3%,and the error of the curves between the shear displacement and the shear stress calculated with the DEM simulation is 4.68%-16.5% compared with that of the laboratory direct shear test. This illustrates that the proposed DEM equivalent model can approximately simulate the mechanical characteristics of the conditioned sands,which provides the basis for further simulation of the interaction between the conditioned soil and the chamber pressure system of the EPB machine.展开更多
With the development of high-speed and heavy-haul railway in China, problems like insufficient thickness of ballast bed and overlarge track stiffness are obvious. Ballast may break into small particles and their conta...With the development of high-speed and heavy-haul railway in China, problems like insufficient thickness of ballast bed and overlarge track stiffness are obvious. Ballast may break into small particles and their contact status will deteriorate under cyclic loading, resulting in ballast degradation. Discrete element method(DEM) was used to research improved performance of ballast bed using elastic sleeper. Clusters were generated by bonding spheres to model real ballasts, while broken bonds were utilized to distinguish breakage. Two kinds of ballast beds with elastic sleeper and conventional sleeper were established, respectively. After applying cyclic loading to the models, differences of mechanical properties between two models were analyzed by contrasting their dynamic behavior indexes, such as particle contact force, sleeper settlement, vibration velocity and acceleration, breakage characteristic. The results illustrate that compared with conventional sleeper, elastic sleeper increases sleeper settlement, while reduces ballast vibration and contact force between particles, which could depress ballast breakage.展开更多
The mechanical properties of outwash deposits which are taken as unconsolidated geo-materials with the characteristics of non-uniformity, heterogeneity and multiphase have attracted much attention in engineering. Acco...The mechanical properties of outwash deposits which are taken as unconsolidated geo-materials with the characteristics of non-uniformity, heterogeneity and multiphase have attracted much attention in engineering. According to the results of laboratory direct shear test on the remolded samples, the soil particle parameters of numerical model based on in-situ particle size cumulative curves and 3D granular discrete element method were determined. Then, numerical experiments on different lithology, stone content and gradation composition were conducted. The results show that it is not a flat surface but a shear band that yields in the sample. The curve of particle velocity vs distance from the designed shear surface of test model that is taken as a datum plane in the vertical section of sample shows in "S" shape. The shear disturbance area is about twice the maximum diameter of stone blocks. The greater the stiffness of stone is, the rougher the shear surface is. The shear strength of outwash deposits is largely controlled by lithology and stone content, and the bite force between stone blocks is the root reason of larger friction angle. It is also shown that strain hardening and low shear dilatancy occur under high confining pressure as well as possibility of shear shrinkage. But it is easy to behave shear dilatation and strain softening under low confining pressure. The relationship between particle frictional coefficient and stone content presents an approximately quadratic parabola increase. The strain energy first increases and then drops with the increase of frictional energy. The cohesion increases with soil stiffness increasing but decreases with stone stiffness increasing. Numerical results are consistent with the laboratory test results of remolded samples, which indicate that this method can be a beneficial supplement to determine the parameters of engineering deposit bodies.展开更多
The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete elem...The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete element method.A randomly generating algorithm was proposed to capture the three-dimensional irregular shape of coarse aggregate.And then,modeling algorithm and method for graded aggregates were built.Based on the combination of modeling of coarse aggregates,asphalt mastic and air voids,three-dimensional virtual sample of asphalt mixture was modeled by using PFC^(3D).Virtual tests for penetration test of aggregate and uniaxial creep test of asphalt mixture were built and conducted by using PFC^(3D).By comparison of the testing results between virtual tests and actual laboratory tests,the validity of the microstructure modeling and virtual test built in this study was verified.Additionally,compared with laboratory test,the virtual test is easier to conduct and has less variability.It is proved that microstructure modeling and virtual test based on three-dimensional discrete element method is a promising way to conduct research of asphalt mixture.展开更多
The lateral resistance of sleeper plays an important role in ensuring the stability of a railway track, which may change in the operation of railway, due to the fouling in the ballast bed. In this work, discrete eleme...The lateral resistance of sleeper plays an important role in ensuring the stability of a railway track, which may change in the operation of railway, due to the fouling in the ballast bed. In this work, discrete element method was adopted to investigate the effect of fouling on the lateral resistance of sleeper. The shape information of ballast was captured by method of three-dimensional vision reconstruction. In order to calibrate the mechanical parameters and verify the models, a lateral resistance field test was carried out by using a custom-made device. The contact force distributions in the different parts of sleeper as well as the interaction between ballast and sleeper were discussed in depth. The results show that fouling of ballast bed evidently reduces the lateral resistance of sleeper and the decreasing degree is also related to the fouled position of ballast bed, in the order of shoulder > bottom > side.Therefore, the effect of fouling, especially the fouling in the ballast shoulder, on the lateral resistance of sleeper, should be taken into account in ballast track maintenance work.展开更多
A user-defined micromechanical model was developed to investigate the fracture mechanism of asphalt concrete (AC) using the discrete element method (DEM). A three-dimensional (3D) AC beam was built using the "F...A user-defined micromechanical model was developed to investigate the fracture mechanism of asphalt concrete (AC) using the discrete element method (DEM). A three-dimensional (3D) AC beam was built using the "Fish" language provided by PFC3D and was employed to simulate the three-point bending beam test at two temperature levels: -10 ℃ and 15℃. The AC beam was modeled with the consideration of the microstructural features of asphalt mixtures. Uniaxial complex modulus test and indirect tensile strength test were conducted to obtain material input parameters for numerical modeling. The 3D predictions were validated using laboratory experimental measurements of AC beams prepared by the same mixture design. Effects of mastic stiffness, cohesive and adhesive strength on AC fracture behavior were investigated using the DEM model. The results show that the 3D DEM fracture model can accurately predict the fracture patterns of asphalt concrete. The ratio of stress at interfaces to the stress in mastics increases as the mastic stiffness decreases; however, the increase in the cohesive strength or adhesive strength shows no significant influence on the tensile strength.展开更多
The behavior of the active layer of material bed within rotary kilns plays a key role in industrial applications.To obtain its influences on industrial process,different regimes of particle motion have been simulated ...The behavior of the active layer of material bed within rotary kilns plays a key role in industrial applications.To obtain its influences on industrial process,different regimes of particle motion have been simulated by discrete element method(DEM) in three dimensions under variant rotation speeds,filling degree,based on the background of induration process of iron ore pellets.The influences of the mentioned factors on the maximum thickness of the active layer and the average velocity of particles have been investigated.The average velocity of particles increases with Froude number following the power function over a wide range,and the maximum thickness rises with increasing rotation speed in a way of logarithm.The influence of the filling degree f on the maximum thickness exhibits a good linearity under two classic regimes,but the increasing of the average velocity of the active layer is limited at f=0.4.This basic research highlights the impact of the active layer within rotary kilns,and lays a good foundation for the further investigation in mixing and heat transfer within the particle bed inside rotary kilns.展开更多
The adhesion between the mining machine and the deep-sea sediments will significantly affect the driving performance of the mining machine in the deep-sea environment.When the mining machine and the deep-sea sediment ...The adhesion between the mining machine and the deep-sea sediments will significantly affect the driving performance of the mining machine in the deep-sea environment.When the mining machine and the deep-sea sediment interaction simulation was carried out,the accuracy of the particle interaction parameters will directly affect the simulation results.This study proposed a method to systematically calibrate the interaction parameters between deep-sea sediment and grouser through the combination of experiment and simulation.The uniaxial compression test and macro adhesion test and corresponding discrete element numerical simulation were carried out,modifying the contact parameters until the simulation results are close to the experimental results.Then the micro-parameters of the JKR adhesion contact model were back calibrated with the test results,and the contact parameters between soil particle-soil particle and soil particle-metal are calibrated.Besides,the adhesion test shows that the adhesion forces were ranked in the order of 5052<STi80<TA2<TC4 under the same surface roughness,which indicates the aluminum alloy 5052 has the best anti-adhesion performance.The relationship between surface adhesion force and microscopic contact parameters was studied by discrete element numerical simulation,and the result shows that the coefficient of static friction and the coefficient of rolling friction has little effect on adhesion force.While it is mainly affected by the coefficient of restitution and surface energy,the surface adhesion force tends to decrease with the increase of the coefficient of restitution and increase with the growth of surface energy.The obtained parameters of soil particle to soil particle and soil particle to metal affecting the adhesion can contribute to the design optimization for the grouser of mining machines to decrease surface adhesion and enhance its movability and mining efficiency.展开更多
To investigate the stability of rock mass in high geostress underground powerhouse caverns subjected to excavation,a microseismic(MS)monitoring system was established and the discrete element method(DEM)-based numeric...To investigate the stability of rock mass in high geostress underground powerhouse caverns subjected to excavation,a microseismic(MS)monitoring system was established and the discrete element method(DEM)-based numerical simulation was carried out.The tempo-spatial damage characteristics of rock mass were analyzed.The evolution laws of MS source parameters during the formation of a rock collapse controlled by high geostress and geological structure were investigated.Additionally,a three-dimensional DEM model of the underground powerhouse caverns was built to reveal the deformation characteristics of rock mass.The results indicated that the MS events induced by excavation of high geostress underground powerhouse caverns occurred frequently.The large-stake crown of the main powerhouse was the main damage area.Prior to the rock collapse,the MS event count and accumulated energy release increased rapidly,while the apparent stress sharply increased and then decreased.The amount and proportion of shear and mixed MS events remarkably increased.The maximum displacement was generally located near the spandrel areas.The MS monitoring data and numerical simulation were in good agreement,which can provide significant references for damage evaluation and disaster forecasting in high geostress underground powerhouse caverns.展开更多
Methods that can efficiently model the effects of rock joints on rock mass behavior can be beneficial in rock engineering. The suitability of equivalent rock mass(ERM) technique based upon particle methods is investig...Methods that can efficiently model the effects of rock joints on rock mass behavior can be beneficial in rock engineering. The suitability of equivalent rock mass(ERM) technique based upon particle methods is investigated. The ERM methodology is first validated by comparing calculated and experimental data of lab triaxial compression test on a set of cylindrical rock mass samples, each containing a single joint oriented in various dip angles. The simulated results are then used to study the stress-strain nonlinearity and failure mechanism as a function of the joint dip angle and confining stress. The anisotropy and size effects are also investigated by using multi-scale cubic ERM models subjected to triaxial compression test. The deformation and failure behavior are found to be influenced by joint degradation, the micro-crack formation in the intact rock, the interaction between two joints, and the interactions of micro-cracks and joints.展开更多
Natural geological structures in rock(e.g.,joints,weakness planes,defects)play a vital role in the stability of tunnels and underground operations during construction.We investigated the failure characteristics of a d...Natural geological structures in rock(e.g.,joints,weakness planes,defects)play a vital role in the stability of tunnels and underground operations during construction.We investigated the failure characteristics of a deep circular tunnel in a rock mass with multiple weakness planes using a 2D combined finite element method/discrete element method(FEM/DEM).Conventional triaxial compression tests were performed on typical hard rock(marble)specimens under a range of confinement stress conditions to validate the rationale and accuracy of the proposed numerical approach.Parametric analysis was subsequently conducted to investigate the influence of inclination angle,and length on the crack propagation behavior,failure mode,energy evolution,and displacement distribution of the surrounding rock.The results show that the inclination angle strongly affects tunnel stability,and the failure intensity and damage range increase with increasing inclination angle and then decrease.The dynamic disasters are more likely with increasing weak plane length.Shearing and sliding along multiple weak planes are also consistently accompanied by kinetic energy fluctuations and surges after unloading,which implies a potentially violent dynamic response around a deeply-buried tunnel.Interactions between slabbing and shearing near the excavation boundaries are also discussed.The results presented here provide important insight into deep tunnel failure in hard rock influenced by both unloading disturbance and tectonic activation.展开更多
Active fault creep slip induces deformation of rock mass buried deeply in fault zones that significantly affect the operational safety of long linear projects passing through it.Displacement distribution patterns of r...Active fault creep slip induces deformation of rock mass buried deeply in fault zones that significantly affect the operational safety of long linear projects passing through it.Displacement distribution patterns of rock masses in active fault zones which have been investigated previously are the key design basis for such projects.Therefore,a discrete element numerical model with different fault types,slip time,dip angles,and complex geological features was established,and then the creep slip for normal,reverse,and strike-slip faults were simulated to analyze the displacement distribution in the fault rock mass.A disk rotation test system and the corresponding laboratory test method were developed for simulating rock mass displacement induced by creep slippage of faults.A series of rotation tests for softand hard-layered specimens under combined compression and torsional stress were conducted to verify the numerical results and analyze the factors influencing the displacement distribution.An S-shaped displacement distribution independent of fault dip angle was identified corresponding to reverse,normal,and strike-slip faults.The results indicated that the higher the degree of horizontal extrusion,the softer the rock mass at the fault core,and the higher the degree of displacement concentration in the fault core;about 70%of the creep slip displacement occurs within this zone under 100 years of creep slippage.展开更多
In order to study the interaction between various fouling particles and ballast,a multi-layer and multi-scale discrete element model(DEM)including the sleeper,ballast bed and the surface layer of subgrade was develope...In order to study the interaction between various fouling particles and ballast,a multi-layer and multi-scale discrete element model(DEM)including the sleeper,ballast bed and the surface layer of subgrade was developed.Two typical fouling particles,the hard particles(sand)and soft ones(coal fines),are considered.A support stiffness test of the ballast bed under various fouling conditions was conducted to calibrate the microscopic parameters of the contact model.With the model,the influence of fouling particles on the mechanical behavior and deformation of the ballast bed was analyzed from macro and micro perspectives.The results show that the increase in the strength of the fouling particles enlarges the stiffness of the ballast bed.Hard particles increase the uniformity coefficient of the contact force bondγof ballast by 50.4%.Fouling particles increase the average stress in the subgrade,soft particles by 2 kPa and hard particles by 1 kPa.Hard particles can reduce the elasticity,plastic deformation and energy dissipation in the track structure.As the fouling particle changes from hard to soft,the proportion of the settlement in ballast bed increases to 40.5%and surface layer of swbgrade settlement decreases to 59.5%.Thus,the influence of fouling particles should be considered carefully in railway design and maintenance.展开更多
For a deeper understanding of the deformation failure behavior of jointed rock, numerical compression simulations are carried out on a rock specimen containing non-persistent joints under confining pressure with the b...For a deeper understanding of the deformation failure behavior of jointed rock, numerical compression simulations are carried out on a rock specimen containing non-persistent joints under confining pressure with the bondedparticle model. The microscopic parameters which can reflect the macroscopic mechanical properties and failure behavior of artificial jointed specimens are firstly calibrated. Then, the influence of joint inclination and confining pressure on stress-strain curves, crack patterns, and contact force distributions of jointed rock are investigated. The simulation results show that both the compressive strength and elastic modulus of the specimens increase with increasing confining pressure, and these two mechanical parameters decrease first and then increase with the increase of joints inclination. The sensitivity of strength and elastic modulus to confining pressure is not the same in different joints inclinations, which has the least impact on specimens with α=90°. Under low confining pressure, the failure modes are controlled by the joint inclination. As the confining pressure increased, the initiation and propagation of tensile crack are gradually inhibited, and the failure mode is transferred from tensile failure to shear-compression failure. Finally, the reinforcement effect of prestressed bolt support on engineering fractured rock mass is discussed.展开更多
This study aims to reveal the macroscopic permanent deformation(PD)behavior and the internal structural evolution of construction and demolition waste(CDW)under loading.Firstly,the initial matric suction of CDW was me...This study aims to reveal the macroscopic permanent deformation(PD)behavior and the internal structural evolution of construction and demolition waste(CDW)under loading.Firstly,the initial matric suction of CDW was measured by the filter paper method.Secondly,the PD of CDW with different humidity and stress states was investigated by repeated load triaxial tests,and a comprehensive prediction model was established.Finally,the discrete element method was performed to analyze the internal structural evolution of CDW during deformation.These results showed that the VAN-GENUCHTEN model could describe the soil-water characteristic curve of CDW well.The PD increases with the increase of the deviator stress and the number of cyclic loading,but the opposite trend was observed when the initial matric suction and confining pressure increased.The proposed model in this study provides a satisfactory prediction of PD.The discrete element method could accurately simulate the macroscopic PD of CDW,and the shear force,interlock force and sliding content increase with the increase of deviator stress during the deformation.The research could provide useful reference for the deformation stability analysis of CDW under cyclic loading.展开更多
The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of tal...The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of talus deposits that widely exist in the hydro-power engineering in the southwest of China were first reconstructed by small particles according to the in-situ photographs based on the self-adaptive PCNN digital image processing,and then numerical direct shear tests were carried out for studying the mechanical properties of talus deposits.Results indicate that the reconstructed meso-structures of talus deposits are more consistent with the actual situation because the self-adaptive PCNN digital image processing has a higher discrimination in the details of soil-rock segmentation.The existence and random distribution of rock blocks make the initial shear stiffness,the peak strength and the residual strength higher than those of the "pure soil" with particle size less than 1.25 cm apparently,but reduce the displacements required for the talus deposits reaching its peak shear strength.The increase of rock proportion causes a significant improvement in the internal friction angle of talus deposit,which to a certain degree leads to the characteristics of shear stress-displacement curves having a changing trend from the plastic strain softening deformation to the nonlinear strain hardening deformation,while an unconspicuous increase in cohesion.The uncertainty and heterogeneity of rock distributions cause the differences of rock proportion within shear zone,leading to a relatively strong fluctuation in peak strengths during the shear process,while movement features of rock blocks,such as translation,rotation and crossing,expand the scope of shear zone,increase the required shear force,and also directly lead to the misjudgment that the lower shear strength is obtained from the samples with high rock proportion.That,however,just explains the reason why the shear strength gained from a small amount of indoor test data is not consistent with engineering practice.展开更多
A micromechanical investigation on simple shear behavior of dense granular assemblies was carried out by discrete element method.Three series of numerical tests were performed to examine the effects of initial porosit...A micromechanical investigation on simple shear behavior of dense granular assemblies was carried out by discrete element method.Three series of numerical tests were performed to examine the effects of initial porosity,vertical stress and particle shape on simple shear behavior of the samples,respectively.It was found that during simple shear the directions of principal stress and principal strain increment rotate differently with shear strain level.The non-coaxiality between the two directions decreases with strain level and may greatly affect the shear behavior of the assemblies,especially their peak friction angles.The numerical modelling also reveals that the rotation of the principal direction of fabric anisotropy lags behind that of the major principal stress direction during simple shear,which is described as fabric hyteresis effect.The degrees of fabric and interparticle contact force anisotropies increase as particle angularity increases,whereas the orientations of these anisotropies have not been significantly influenced by particle shape.An extended stress–dilatancy relationship based on ROWE-DAVIS framework was proposed to consider the non-coaxiality effect under principal stress rotation.The model was validated by present numerical results as well as some published physical test and numerical modelled data.展开更多
The discrete element method was used to investigate the microscopic characteristics of granular materials under simple shear loading conditions. A series of simple tests on photo-elastic materials were used as a bench...The discrete element method was used to investigate the microscopic characteristics of granular materials under simple shear loading conditions. A series of simple tests on photo-elastic materials were used as a benchmark. With respect to the original experimental observations, average micro-variables such as the shear stress, shear strain and the volumetric dilatancy were extracted to illustrate the performance of the DEM simulation. The change of anisotropic density distributions of contact normals and contact forces was demonstrated during the course of simple shear. On the basis of microscopic characteristics, an analytical approach was further used to explore the macroscopic behaviors involving anisotropic shear strength and anisotropic stress-dilatancy. This results show that under simple shear loading, anisotropic shear strength arises primarily due to the difference between principal directions of the stress and the fabric. In addition, non-coaxiality, referring to the difference between principal directions of the strain rate and the stress, generates less stress-dilatancy. In particular, the anisotropic hardening and anisotropic stress-dilatancy will reduce to the isotropic hardening and the classical Taylor’s stress-dilatancy under proportional loading.展开更多
The layout of the buckets for tunnel boring machine(TBM)directly affects the muck removal efficiency of cutterhead during excavation.In order to improve the muck removal performance for TBM,the optimal design of bucke...The layout of the buckets for tunnel boring machine(TBM)directly affects the muck removal efficiency of cutterhead during excavation.In order to improve the muck removal performance for TBM,the optimal design of bucket layout was investigated.The whole muck transfer process was simulated by discrete-element method(DEM),including the muck falling,colliding,pilling up,shoveling and transferring into the hopper.The muck model was established based on size distribution analysis of muck samples from the water-supply tunnel project in Jilin Province,China.Then,the influence of the bucket number and the interval angle between buckets on muck removal performance was investigated.The results indicated that,as the number of buckets increased from four to eight,the removed muck increased by 29%and the residual volume decreased by 40.5%,and the process became steadier.Different interval angles between buckets were corresponding to different removed muck irregularly,but the residual muck number increased generally with the angles.The optimal layout of buckets for the cutterhead in this tunnel project was obtained based on the simulation results,and the muck removal performance of the TBM was verified by the actual data in the engineering construction.展开更多
文摘In polar regions, floating ice exhibits distinct characteristics across a range of spatial scales. It is well recognized that the irregular geometry of these ice formations markedly influences their dynamic behavior. This study introduces a polyhedral Discrete Element Method (DEM) tailored for polar ice, incorporating the Gilbert-Johnson-Keerthi (GJK) and Expanding Polytope Algorithm (EPA) for contact detection. This approach facilitates the simulation of the drift and collision processes of floating ice, effectively capturing its freezing and fragmentation. Subsequently, the stability and reli ability of this model are validated by uniaxial compression on level ice fields, focusing specifically on the influence of compression strength on deformation resistance. Additionally, clusters of ice floes nav igating through narrow channels are simulated. These studies have qualitatively assessed the effects of Floe Size Distribution (FSD), initial concentration, and circularity on their flow dynamics. The higher power-law exponent values in the FSD, increased circularity, and decreased concentration are each as sociated with accelerated flow in ice floe fields. The simulation results distinctly demonstrate the con siderable impact of sea ice geometry on the movement of clusters, offering valuable insights into the complexities of polar ice dynamics.
基金Project (2007CB714006) supported by the National Basic Research Program of China
文摘The discrete element method (DEM) was used to simulate the flow characteristic and strength characteristic of the conditioned sands in the earth pressure balance (EPB) tunneling. In the laboratory the conditioned sands were reproduced and the slump test and the direct shear test of the conditioned sands were implemented. A DEM equivalent model that can simulate the macro mechanical characteristic of the conditioned sands was proposed,and the corresponding numerical models of the slump test and the shear test were established. By selecting proper DEM model parameters,the errors of the slump values between the simulation results and the test results are in the range of 10.3%-14.3%,and the error of the curves between the shear displacement and the shear stress calculated with the DEM simulation is 4.68%-16.5% compared with that of the laboratory direct shear test. This illustrates that the proposed DEM equivalent model can approximately simulate the mechanical characteristics of the conditioned sands,which provides the basis for further simulation of the interaction between the conditioned soil and the chamber pressure system of the EPB machine.
基金Project(U1234211)supported by the National Natural Science Foundation of ChinaProject(2013G009-B)supported by China Railway Corporation
文摘With the development of high-speed and heavy-haul railway in China, problems like insufficient thickness of ballast bed and overlarge track stiffness are obvious. Ballast may break into small particles and their contact status will deteriorate under cyclic loading, resulting in ballast degradation. Discrete element method(DEM) was used to research improved performance of ballast bed using elastic sleeper. Clusters were generated by bonding spheres to model real ballasts, while broken bonds were utilized to distinguish breakage. Two kinds of ballast beds with elastic sleeper and conventional sleeper were established, respectively. After applying cyclic loading to the models, differences of mechanical properties between two models were analyzed by contrasting their dynamic behavior indexes, such as particle contact force, sleeper settlement, vibration velocity and acceleration, breakage characteristic. The results illustrate that compared with conventional sleeper, elastic sleeper increases sleeper settlement, while reduces ballast vibration and contact force between particles, which could depress ballast breakage.
基金Project(2011CB013504) supported by the National Basic Research Program of ChinaProjects(50911130366, 11172090) supported by the National Natural Science Foundation of ChinaProject supported by Central University Basic Research Special Fund, China
文摘The mechanical properties of outwash deposits which are taken as unconsolidated geo-materials with the characteristics of non-uniformity, heterogeneity and multiphase have attracted much attention in engineering. According to the results of laboratory direct shear test on the remolded samples, the soil particle parameters of numerical model based on in-situ particle size cumulative curves and 3D granular discrete element method were determined. Then, numerical experiments on different lithology, stone content and gradation composition were conducted. The results show that it is not a flat surface but a shear band that yields in the sample. The curve of particle velocity vs distance from the designed shear surface of test model that is taken as a datum plane in the vertical section of sample shows in "S" shape. The shear disturbance area is about twice the maximum diameter of stone blocks. The greater the stiffness of stone is, the rougher the shear surface is. The shear strength of outwash deposits is largely controlled by lithology and stone content, and the bite force between stone blocks is the root reason of larger friction angle. It is also shown that strain hardening and low shear dilatancy occur under high confining pressure as well as possibility of shear shrinkage. But it is easy to behave shear dilatation and strain softening under low confining pressure. The relationship between particle frictional coefficient and stone content presents an approximately quadratic parabola increase. The strain energy first increases and then drops with the increase of frictional energy. The cohesion increases with soil stiffness increasing but decreases with stone stiffness increasing. Numerical results are consistent with the laboratory test results of remolded samples, which indicate that this method can be a beneficial supplement to determine the parameters of engineering deposit bodies.
基金Project(51378006) supported by National Natural Science Foundation of ChinaProject(141076) supported by Huoyingdong Foundation of the Ministry of Education of China+1 种基金Project(2242015R30027) supported by Excellent Young Teacher Program of Southeast University,ChinaProject(BK20140109) supported by the Natural Science Foundation of Jiangsu Province,China
文摘The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete element method.A randomly generating algorithm was proposed to capture the three-dimensional irregular shape of coarse aggregate.And then,modeling algorithm and method for graded aggregates were built.Based on the combination of modeling of coarse aggregates,asphalt mastic and air voids,three-dimensional virtual sample of asphalt mixture was modeled by using PFC^(3D).Virtual tests for penetration test of aggregate and uniaxial creep test of asphalt mixture were built and conducted by using PFC^(3D).By comparison of the testing results between virtual tests and actual laboratory tests,the validity of the microstructure modeling and virtual test built in this study was verified.Additionally,compared with laboratory test,the virtual test is easier to conduct and has less variability.It is proved that microstructure modeling and virtual test based on three-dimensional discrete element method is a promising way to conduct research of asphalt mixture.
基金Projects(U1234211,61472029,51208034)supported by the National Natural Science Foundation of China
文摘The lateral resistance of sleeper plays an important role in ensuring the stability of a railway track, which may change in the operation of railway, due to the fouling in the ballast bed. In this work, discrete element method was adopted to investigate the effect of fouling on the lateral resistance of sleeper. The shape information of ballast was captured by method of three-dimensional vision reconstruction. In order to calibrate the mechanical parameters and verify the models, a lateral resistance field test was carried out by using a custom-made device. The contact force distributions in the different parts of sleeper as well as the interaction between ballast and sleeper were discussed in depth. The results show that fouling of ballast bed evidently reduces the lateral resistance of sleeper and the decreasing degree is also related to the fouled position of ballast bed, in the order of shoulder > bottom > side.Therefore, the effect of fouling, especially the fouling in the ballast shoulder, on the lateral resistance of sleeper, should be taken into account in ballast track maintenance work.
基金Project(51208178)supported by the National Natural Science Foundation of ChinaProject(2012M520991)supported by China Postdoctoral Science Foundation
文摘A user-defined micromechanical model was developed to investigate the fracture mechanism of asphalt concrete (AC) using the discrete element method (DEM). A three-dimensional (3D) AC beam was built using the "Fish" language provided by PFC3D and was employed to simulate the three-point bending beam test at two temperature levels: -10 ℃ and 15℃. The AC beam was modeled with the consideration of the microstructural features of asphalt mixtures. Uniaxial complex modulus test and indirect tensile strength test were conducted to obtain material input parameters for numerical modeling. The 3D predictions were validated using laboratory experimental measurements of AC beams prepared by the same mixture design. Effects of mastic stiffness, cohesive and adhesive strength on AC fracture behavior were investigated using the DEM model. The results show that the 3D DEM fracture model can accurately predict the fracture patterns of asphalt concrete. The ratio of stress at interfaces to the stress in mastics increases as the mastic stiffness decreases; however, the increase in the cohesive strength or adhesive strength shows no significant influence on the tensile strength.
基金Project(FRF-AS-10-0058) supported by the Fundamental Research Funds for the Central Universities,China
文摘The behavior of the active layer of material bed within rotary kilns plays a key role in industrial applications.To obtain its influences on industrial process,different regimes of particle motion have been simulated by discrete element method(DEM) in three dimensions under variant rotation speeds,filling degree,based on the background of induration process of iron ore pellets.The influences of the mentioned factors on the maximum thickness of the active layer and the average velocity of particles have been investigated.The average velocity of particles increases with Froude number following the power function over a wide range,and the maximum thickness rises with increasing rotation speed in a way of logarithm.The influence of the filling degree f on the maximum thickness exhibits a good linearity under two classic regimes,but the increasing of the average velocity of the active layer is limited at f=0.4.This basic research highlights the impact of the active layer within rotary kilns,and lays a good foundation for the further investigation in mixing and heat transfer within the particle bed inside rotary kilns.
基金Project(12072309)supported by the National Natural Science Foundation of ChinaProject(19B546)supported by the Education Department Foundation of Hunan Province,ChinaProject(2019RS1059)supported by the Hunan Innovative Province Construction Project,China。
文摘The adhesion between the mining machine and the deep-sea sediments will significantly affect the driving performance of the mining machine in the deep-sea environment.When the mining machine and the deep-sea sediment interaction simulation was carried out,the accuracy of the particle interaction parameters will directly affect the simulation results.This study proposed a method to systematically calibrate the interaction parameters between deep-sea sediment and grouser through the combination of experiment and simulation.The uniaxial compression test and macro adhesion test and corresponding discrete element numerical simulation were carried out,modifying the contact parameters until the simulation results are close to the experimental results.Then the micro-parameters of the JKR adhesion contact model were back calibrated with the test results,and the contact parameters between soil particle-soil particle and soil particle-metal are calibrated.Besides,the adhesion test shows that the adhesion forces were ranked in the order of 5052<STi80<TA2<TC4 under the same surface roughness,which indicates the aluminum alloy 5052 has the best anti-adhesion performance.The relationship between surface adhesion force and microscopic contact parameters was studied by discrete element numerical simulation,and the result shows that the coefficient of static friction and the coefficient of rolling friction has little effect on adhesion force.While it is mainly affected by the coefficient of restitution and surface energy,the surface adhesion force tends to decrease with the increase of the coefficient of restitution and increase with the growth of surface energy.The obtained parameters of soil particle to soil particle and soil particle to metal affecting the adhesion can contribute to the design optimization for the grouser of mining machines to decrease surface adhesion and enhance its movability and mining efficiency.
基金Project(2017YFC1501100)supported by the National Key R&D Program of ChinaProjects(51809221,51679158)supported by the National Natural Science Foundation of China。
文摘To investigate the stability of rock mass in high geostress underground powerhouse caverns subjected to excavation,a microseismic(MS)monitoring system was established and the discrete element method(DEM)-based numerical simulation was carried out.The tempo-spatial damage characteristics of rock mass were analyzed.The evolution laws of MS source parameters during the formation of a rock collapse controlled by high geostress and geological structure were investigated.Additionally,a three-dimensional DEM model of the underground powerhouse caverns was built to reveal the deformation characteristics of rock mass.The results indicated that the MS events induced by excavation of high geostress underground powerhouse caverns occurred frequently.The large-stake crown of the main powerhouse was the main damage area.Prior to the rock collapse,the MS event count and accumulated energy release increased rapidly,while the apparent stress sharply increased and then decreased.The amount and proportion of shear and mixed MS events remarkably increased.The maximum displacement was generally located near the spandrel areas.The MS monitoring data and numerical simulation were in good agreement,which can provide significant references for damage evaluation and disaster forecasting in high geostress underground powerhouse caverns.
基金Projects(51074014,51174014) supported by the National Natural Science Foundation of China
文摘Methods that can efficiently model the effects of rock joints on rock mass behavior can be beneficial in rock engineering. The suitability of equivalent rock mass(ERM) technique based upon particle methods is investigated. The ERM methodology is first validated by comparing calculated and experimental data of lab triaxial compression test on a set of cylindrical rock mass samples, each containing a single joint oriented in various dip angles. The simulated results are then used to study the stress-strain nonlinearity and failure mechanism as a function of the joint dip angle and confining stress. The anisotropy and size effects are also investigated by using multi-scale cubic ERM models subjected to triaxial compression test. The deformation and failure behavior are found to be influenced by joint degradation, the micro-crack formation in the intact rock, the interaction between two joints, and the interactions of micro-cracks and joints.
基金Projects(52004143,51774194)supported by the National Natural Science Foundation of ChinaProject(2020M670781)supported by the China Postdoctoral Science Foundation+2 种基金Project(SKLGDUEK2021)supported by the State Key Laboratory for GeoMechanics and Deep Underground Engineering,ChinaProject(U1806208)supported by the NSFC-Shandong Joint Fund,ChinaProject(2018GSF117023)supported by the Key Research and Development Program of Shandong Province,China。
文摘Natural geological structures in rock(e.g.,joints,weakness planes,defects)play a vital role in the stability of tunnels and underground operations during construction.We investigated the failure characteristics of a deep circular tunnel in a rock mass with multiple weakness planes using a 2D combined finite element method/discrete element method(FEM/DEM).Conventional triaxial compression tests were performed on typical hard rock(marble)specimens under a range of confinement stress conditions to validate the rationale and accuracy of the proposed numerical approach.Parametric analysis was subsequently conducted to investigate the influence of inclination angle,and length on the crack propagation behavior,failure mode,energy evolution,and displacement distribution of the surrounding rock.The results show that the inclination angle strongly affects tunnel stability,and the failure intensity and damage range increase with increasing inclination angle and then decrease.The dynamic disasters are more likely with increasing weak plane length.Shearing and sliding along multiple weak planes are also consistently accompanied by kinetic energy fluctuations and surges after unloading,which implies a potentially violent dynamic response around a deeply-buried tunnel.Interactions between slabbing and shearing near the excavation boundaries are also discussed.The results presented here provide important insight into deep tunnel failure in hard rock influenced by both unloading disturbance and tectonic activation.
基金Project(U1865203)supported by the Key Projects of the Yalong River Joint Fund of the National Natural Science Foundation of ChinaProjects(41941018,51879135)supported by the National Natural Science Foundation of China。
文摘Active fault creep slip induces deformation of rock mass buried deeply in fault zones that significantly affect the operational safety of long linear projects passing through it.Displacement distribution patterns of rock masses in active fault zones which have been investigated previously are the key design basis for such projects.Therefore,a discrete element numerical model with different fault types,slip time,dip angles,and complex geological features was established,and then the creep slip for normal,reverse,and strike-slip faults were simulated to analyze the displacement distribution in the fault rock mass.A disk rotation test system and the corresponding laboratory test method were developed for simulating rock mass displacement induced by creep slippage of faults.A series of rotation tests for softand hard-layered specimens under combined compression and torsional stress were conducted to verify the numerical results and analyze the factors influencing the displacement distribution.An S-shaped displacement distribution independent of fault dip angle was identified corresponding to reverse,normal,and strike-slip faults.The results indicated that the higher the degree of horizontal extrusion,the softer the rock mass at the fault core,and the higher the degree of displacement concentration in the fault core;about 70%of the creep slip displacement occurs within this zone under 100 years of creep slippage.
基金Project(51978045) supported by the National Natural Science Foundation of ChinaProject([2017]7) supported by Shenshuo Science and Technology Development Project,China。
文摘In order to study the interaction between various fouling particles and ballast,a multi-layer and multi-scale discrete element model(DEM)including the sleeper,ballast bed and the surface layer of subgrade was developed.Two typical fouling particles,the hard particles(sand)and soft ones(coal fines),are considered.A support stiffness test of the ballast bed under various fouling conditions was conducted to calibrate the microscopic parameters of the contact model.With the model,the influence of fouling particles on the mechanical behavior and deformation of the ballast bed was analyzed from macro and micro perspectives.The results show that the increase in the strength of the fouling particles enlarges the stiffness of the ballast bed.Hard particles increase the uniformity coefficient of the contact force bondγof ballast by 50.4%.Fouling particles increase the average stress in the subgrade,soft particles by 2 kPa and hard particles by 1 kPa.Hard particles can reduce the elasticity,plastic deformation and energy dissipation in the track structure.As the fouling particle changes from hard to soft,the proportion of the settlement in ballast bed increases to 40.5%and surface layer of swbgrade settlement decreases to 59.5%.Thus,the influence of fouling particles should be considered carefully in railway design and maintenance.
基金Projects(52004145,51904164)supported by the National Natural Science Foundation of ChinaProject(ZR2020QE119)supported by the Natural Science Foundation of Shandong Province,ChinaProject(SICGM202107)supported by the Open Fund of the Key Laboratory of Mining Disaster Prevention and Control,China。
文摘For a deeper understanding of the deformation failure behavior of jointed rock, numerical compression simulations are carried out on a rock specimen containing non-persistent joints under confining pressure with the bondedparticle model. The microscopic parameters which can reflect the macroscopic mechanical properties and failure behavior of artificial jointed specimens are firstly calibrated. Then, the influence of joint inclination and confining pressure on stress-strain curves, crack patterns, and contact force distributions of jointed rock are investigated. The simulation results show that both the compressive strength and elastic modulus of the specimens increase with increasing confining pressure, and these two mechanical parameters decrease first and then increase with the increase of joints inclination. The sensitivity of strength and elastic modulus to confining pressure is not the same in different joints inclinations, which has the least impact on specimens with α=90°. Under low confining pressure, the failure modes are controlled by the joint inclination. As the confining pressure increased, the initiation and propagation of tensile crack are gradually inhibited, and the failure mode is transferred from tensile failure to shear-compression failure. Finally, the reinforcement effect of prestressed bolt support on engineering fractured rock mass is discussed.
基金Project(52025085)supported by the National Science Fund for Distinguished Young Scholars,ChinaProjects(51927814,51878078)supported by the National Natural Science Foundation of China+3 种基金Project(2018-025)supported by the Training Program for High-level Technical Personnel in Transportation Industry,ChinaProject(CTKY-PTRC 2018-003)supported by the Design Theory,Method and Demonstration of Durability Asphalt Pavement Based on Heavy-duty Traffic Conditions in Shanghai Area,ChinaProject(2020RC4048)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProject(SJCX202001)supported by the Construction Project for Graduate Students of Changsha University of Science&Technology,China。
文摘This study aims to reveal the macroscopic permanent deformation(PD)behavior and the internal structural evolution of construction and demolition waste(CDW)under loading.Firstly,the initial matric suction of CDW was measured by the filter paper method.Secondly,the PD of CDW with different humidity and stress states was investigated by repeated load triaxial tests,and a comprehensive prediction model was established.Finally,the discrete element method was performed to analyze the internal structural evolution of CDW during deformation.These results showed that the VAN-GENUCHTEN model could describe the soil-water characteristic curve of CDW well.The PD increases with the increase of the deviator stress and the number of cyclic loading,but the opposite trend was observed when the initial matric suction and confining pressure increased.The proposed model in this study provides a satisfactory prediction of PD.The discrete element method could accurately simulate the macroscopic PD of CDW,and the shear force,interlock force and sliding content increase with the increase of deviator stress during the deformation.The research could provide useful reference for the deformation stability analysis of CDW under cyclic loading.
基金Project(2013BAB06B00) supported by the National Key Technology R&D Programof ChinaProject(2011CB013504) supported by the National Basic Research Program of ChinaProject(50911130366) supported by the National Natural Science Foundation of China
文摘The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of talus deposits that widely exist in the hydro-power engineering in the southwest of China were first reconstructed by small particles according to the in-situ photographs based on the self-adaptive PCNN digital image processing,and then numerical direct shear tests were carried out for studying the mechanical properties of talus deposits.Results indicate that the reconstructed meso-structures of talus deposits are more consistent with the actual situation because the self-adaptive PCNN digital image processing has a higher discrimination in the details of soil-rock segmentation.The existence and random distribution of rock blocks make the initial shear stiffness,the peak strength and the residual strength higher than those of the "pure soil" with particle size less than 1.25 cm apparently,but reduce the displacements required for the talus deposits reaching its peak shear strength.The increase of rock proportion causes a significant improvement in the internal friction angle of talus deposit,which to a certain degree leads to the characteristics of shear stress-displacement curves having a changing trend from the plastic strain softening deformation to the nonlinear strain hardening deformation,while an unconspicuous increase in cohesion.The uncertainty and heterogeneity of rock distributions cause the differences of rock proportion within shear zone,leading to a relatively strong fluctuation in peak strengths during the shear process,while movement features of rock blocks,such as translation,rotation and crossing,expand the scope of shear zone,increase the required shear force,and also directly lead to the misjudgment that the lower shear strength is obtained from the samples with high rock proportion.That,however,just explains the reason why the shear strength gained from a small amount of indoor test data is not consistent with engineering practice.
基金Projects(50909057,51208294,41372319)supported by the National Natural Science Foundation of ChinaProject(15ZZ081)supported by Innovation Program of Shanghai Municipal Education Commission,ChinaProject(20131129)supported by Innovation Program of Shanghai Postgraduate Education,China
文摘A micromechanical investigation on simple shear behavior of dense granular assemblies was carried out by discrete element method.Three series of numerical tests were performed to examine the effects of initial porosity,vertical stress and particle shape on simple shear behavior of the samples,respectively.It was found that during simple shear the directions of principal stress and principal strain increment rotate differently with shear strain level.The non-coaxiality between the two directions decreases with strain level and may greatly affect the shear behavior of the assemblies,especially their peak friction angles.The numerical modelling also reveals that the rotation of the principal direction of fabric anisotropy lags behind that of the major principal stress direction during simple shear,which is described as fabric hyteresis effect.The degrees of fabric and interparticle contact force anisotropies increase as particle angularity increases,whereas the orientations of these anisotropies have not been significantly influenced by particle shape.An extended stress–dilatancy relationship based on ROWE-DAVIS framework was proposed to consider the non-coaxiality effect under principal stress rotation.The model was validated by present numerical results as well as some published physical test and numerical modelled data.
基金Projects(10972159, 41272291, 51238009) supported by the National Natural Science Foundation of China Project supported by the Fundamental Research Funds of the central Universities
文摘The discrete element method was used to investigate the microscopic characteristics of granular materials under simple shear loading conditions. A series of simple tests on photo-elastic materials were used as a benchmark. With respect to the original experimental observations, average micro-variables such as the shear stress, shear strain and the volumetric dilatancy were extracted to illustrate the performance of the DEM simulation. The change of anisotropic density distributions of contact normals and contact forces was demonstrated during the course of simple shear. On the basis of microscopic characteristics, an analytical approach was further used to explore the macroscopic behaviors involving anisotropic shear strength and anisotropic stress-dilatancy. This results show that under simple shear loading, anisotropic shear strength arises primarily due to the difference between principal directions of the stress and the fabric. In addition, non-coaxiality, referring to the difference between principal directions of the strain rate and the stress, generates less stress-dilatancy. In particular, the anisotropic hardening and anisotropic stress-dilatancy will reduce to the isotropic hardening and the classical Taylor’s stress-dilatancy under proportional loading.
基金Project(51475478)supported by the National Natural Science Foundation of ChinaProject(2012AA041801)supported by the National High Technology Research and Development Program of China+1 种基金Project(2014FJ1002)supported by the Science and Technology Major Project of Hunan Province,ChinaProject(2013CB035401)supported by the National Basic Research Program of China。
文摘The layout of the buckets for tunnel boring machine(TBM)directly affects the muck removal efficiency of cutterhead during excavation.In order to improve the muck removal performance for TBM,the optimal design of bucket layout was investigated.The whole muck transfer process was simulated by discrete-element method(DEM),including the muck falling,colliding,pilling up,shoveling and transferring into the hopper.The muck model was established based on size distribution analysis of muck samples from the water-supply tunnel project in Jilin Province,China.Then,the influence of the bucket number and the interval angle between buckets on muck removal performance was investigated.The results indicated that,as the number of buckets increased from four to eight,the removed muck increased by 29%and the residual volume decreased by 40.5%,and the process became steadier.Different interval angles between buckets were corresponding to different removed muck irregularly,but the residual muck number increased generally with the angles.The optimal layout of buckets for the cutterhead in this tunnel project was obtained based on the simulation results,and the muck removal performance of the TBM was verified by the actual data in the engineering construction.