The physical process of capillary discharge in a PE tube utilized in electro-thermal-chemical(ETC)guns was investigated.ETC guns can enhance the ignition and combustion of propellant in order to reduce the ignition de...The physical process of capillary discharge in a PE tube utilized in electro-thermal-chemical(ETC)guns was investigated.ETC guns can enhance the ignition and combustion of propellant in order to reduce the ignition delay and increase muzzle velocity of the projectile.A key component in ETC gun is the capillary plasma source.In this paper,a 2D steady state model of discharge was built by using magnetic hydrodynamics method.It took the plasma energy balance,material ablation,mass and momentum conservations in a quasi-neutral plasma region into account.Also,the effect of different compositions and PE concentration distribution were considered.In order to evaluate the validation of this model,the simulation results are compared with former works.展开更多
In this work,hydrogen is produced from partial oxidation reforming of dimethyl ether (DME) by a plasma-catalyst hybrid reformer under atmospheric pressure.The plasma-catalyst hybrid reformer which includes both plas...In this work,hydrogen is produced from partial oxidation reforming of dimethyl ether (DME) by a plasma-catalyst hybrid reformer under atmospheric pressure.The plasma-catalyst hybrid reformer which includes both plasma and catalyst reactors is designed.A spark discharge is used as a non-equilibrium plasma source,and it is used to ionize the mixture of DME and air.The performances of the reformer are characterized experimentally in terms of gas concentrations,hydrogen yield,DME conversion ratio,and specific energy consumption.The effects of discharge frequency,reaction temperature,air-to-DME ratio and space velocity are investigated.The experimental results show that the plasma-catalyst hybrid reformer enhances hydrogen yield when reaction temperature drops below 620 ℃.At 450 ℃,hydrogen yield of hybrid reforming is almost three times that of catalyst reforming.When space velocity is 510 h-1,hydrogen yield is 67.7%,and specific energy consumption is 12.2 k J/L-H2.展开更多
文摘The physical process of capillary discharge in a PE tube utilized in electro-thermal-chemical(ETC)guns was investigated.ETC guns can enhance the ignition and combustion of propellant in order to reduce the ignition delay and increase muzzle velocity of the projectile.A key component in ETC gun is the capillary plasma source.In this paper,a 2D steady state model of discharge was built by using magnetic hydrodynamics method.It took the plasma energy balance,material ablation,mass and momentum conservations in a quasi-neutral plasma region into account.Also,the effect of different compositions and PE concentration distribution were considered.In order to evaluate the validation of this model,the simulation results are compared with former works.
基金Project(21106002)supported by the National Natural Science Foundation of ChinaProject(2010DFA72760)supported by Collaboration on Cutting-Edge Technology Development of Electric Vehicle,China
文摘In this work,hydrogen is produced from partial oxidation reforming of dimethyl ether (DME) by a plasma-catalyst hybrid reformer under atmospheric pressure.The plasma-catalyst hybrid reformer which includes both plasma and catalyst reactors is designed.A spark discharge is used as a non-equilibrium plasma source,and it is used to ionize the mixture of DME and air.The performances of the reformer are characterized experimentally in terms of gas concentrations,hydrogen yield,DME conversion ratio,and specific energy consumption.The effects of discharge frequency,reaction temperature,air-to-DME ratio and space velocity are investigated.The experimental results show that the plasma-catalyst hybrid reformer enhances hydrogen yield when reaction temperature drops below 620 ℃.At 450 ℃,hydrogen yield of hybrid reforming is almost three times that of catalyst reforming.When space velocity is 510 h-1,hydrogen yield is 67.7%,and specific energy consumption is 12.2 k J/L-H2.